Til hovedinnhold
Norsk English

End-to-end learning for autonomous crop row-following

Sammendrag

For robotic technology to be adopted within the agricultural domain, there is a need for low-cost systems that can be flexibly deployed across a wide variety of crop types, environmental conditions, and planting methods, without extensive re-engineering. Here we present an approach for predicting steering angles for an autonomous, crop row-following, agri-robot using only RGB image input. Our approach employs a deep convolutional neural network (DCNN) and an end-to-end learning strategy. We pre-train our network using existing open datasets containing natural features and show that this approach can help to preserve performance across diverse agricultural settings. We also present preliminary results from open-loop field tests that demonstrate the feasibility and some of the limitations of this approach for agri-robot guidance.
Les publikasjonen

Kategori

Vitenskapelig artikkel

Språk

Engelsk

Forfatter(e)

Institusjon(er)

  • SINTEF Digital / Smart Sensors and Microsystems
  • Norges miljø- og biovitenskapelige universitet

År

2019

Publisert i

IFAC-PapersOnLine

Årgang

52

Hefte nr.

30

Side(r)

102 - 107

Vis denne publikasjonen hos Nasjonalt Vitenarkiv