Til hovedinnhold
Norsk English

Screening of thermoelectric silicides with atomistic transport calculations

Sammendrag

More than 1000 crystalline silicide materials have been screened for thermoelectric properties using first-principles atomistic calculations coupled with the semi-classical Boltzmann transport equation. Compounds that contain radioactive, toxic, rare, and expensive elements as well as oxides, hydrides, carbides, nitrides, and halides have been neglected in the study. The already well-known silicides with good thermoelectric properties, such as SiGe, Mg2Si, and MnSix, are successfully predicted to be promising compounds along with a number of other binary and ternary silicide compositions. Some of these materials have only been scarcely studied in the literature, with no thermoelectric properties being reported in experimental papers. These novel materials can be very interesting for thermoelectric applications provided that they can be heavily doped to give a sufficiently high charge carrier concentration and that they can be alloyed with isoelectronic elements to achieve adequately low phonon thermal conductivity. The study concludes with a list of the most promising silicide compounds that are recommended for further experimental and theoretical investigations.
Les publikasjonen

Kategori

Vitenskapelig artikkel

Språk

Engelsk

Forfatter(e)

Institusjon(er)

  • SINTEF Industri / Bærekraftig energiteknologi
  • Elkem AS

År

2020

Publisert i

Journal of Applied Physics

ISSN

0021-8979

Årgang

128

Vis denne publikasjonen hos Nasjonalt Vitenarkiv