Til hovedinnhold

AFM measurements of forces between silica surfaces

AFM measurements of forces between silica surfaces

Kategori
Tidsskriftspublikasjon
Sammendrag
Interaction forces and adhesion between a silica sphere and a flat silica surface in aqueous electrolyte solutions were investigated by atomic force microscopy. The forces were measured as a function of surface separation, pH and NaCl concentration as the surfaces were approaching each other. The adhesion force was determined upon retraction with respect to pH, NaCl concentration and contact time. The magnitude of the long range repulsive force was decreasing with decreasing pH. A short range repulsive force was observed at pH = 2, but no long range repulsive forces were observed at this pH. Force measurements showed that adhesion of silica surfaces in water was obstructed by short and long range repulsive forces. Adhesion was enhanced when both the long and the short range repulsive force was mitigated. A maximum adhesion force of 7.8 mN/m was measured at pH = 12.5 when the short range force vanished and the long range repulsive force was reduced by increasing the NaCl concentration. At pH = 12.5, the work of adhesion was calculated to be 1.2 mJ/m2 according to the Derjaguin– Muller–Toporov (DMT) model. Adhesion energy was much less at pH = 2 (0.3 mJ/m2) due to persistive short range repulsion.
Språk
Engelsk
Forfatter(e)
  • Güleryüz Hasan
  • Røyset Arne Karstein
  • Kaus Ingeborg
  • Filiâtre Claudine
  • Einarsrud Mari-Ann
Institusjon(er)
  • Norges teknisk-naturvitenskapelige universitet
  • SINTEF Industri / Materialer og nanoteknologi
  • SINTEF Industri / Bærekraftig energiteknologi
  • Frankrike
År
2012
Publisert i
Journal of Sol-Gel Science and Technology
ISSN
0928-0707
Årgang
62
Hefte nr.
3
Side(r)
460 - 469