Til hovedinnhold
Norsk English

Numerical approach for generic three‐phase flow based on cut‐cell and ghost fluid methods

Sammendrag

In this paper, we introduce numerical methods that can simulate complex multiphase flows. The finite volume method, applying Cartesian cut‐cell is used in the computational domain, containing fluid and solid, to conserve mass and momentum. With this method, flows in and around any geometry can be simulated without complex and time consuming meshing. For the fluid region, which involves liquid and gas, the ghost fluid method is employed to handle the stiffness of the interface discontinuity problem. The interaction between each phase is treated simply by wall function models or jump conditions of pressure, velocity and shear stress at the interface. The sharp interface method “coupled level set (LS) and volume of fluid (VOF)” is used to represent the interface between the two fluid phases. This approach will combine some advantages of both interface tracking/capturing methods, such as the excellent mass conservation from the VOF method and good accuracy of interface normal computation from the LS function. The first coupled LS and VOF will be generated to reconstruct the interface between solid and the other materials. The second will represent the interface between liquid and gas.
Les publikasjonen

Kategori

Vitenskapelig artikkel

Språk

Engelsk

Forfatter(e)

Institusjon(er)

  • SINTEF Industri / Prosessteknologi
  • Norges teknisk-naturvitenskapelige universitet

År

2019

Publisert i

International Journal for Numerical Methods in Fluids

ISSN

0271-2091

Årgang

91

Hefte nr.

9

Side(r)

419 - 447

Vis denne publikasjonen hos Nasjonalt Vitenarkiv