Til hovedinnhold
Norsk English

Online parameter identification of synchronous machines using Kalman filter and recursive least squares

Sammendrag

This paper investigates and implements a procedure for parameter identification of salient pole synchronous machines that is based on previous knowledge about the equipment and can be used for condition monitoring, online assessment of the electrical power grid, and adaptive control. It uses a Kalman filter to handle noise and correct deviations in measurements caused by uncertainty of instruments or effects not included in the model. Then it applies a recursive least squares algorithm to identify parameters from the synchronous machine model. Despite being affected by saturation effects, the proposed procedure estimates 8 out of 13 parameters from the machine model with minor deviations from data sheet values and is largely insensitive to noise and load conditions.
Les publikasjonen

Kategori

Vitenskapelig kapittel

Språk

Engelsk

Forfatter(e)

  • Erick Fernando Alves
  • Jonas Kristiansen Nøland
  • Giancarlo Marafioti
  • Geir Mathisen

Institusjon(er)

  • SINTEF Digital / Mathematics and Cybernetics
  • Norges teknisk-naturvitenskapelige universitet

År

2019

Forlag

IEEE (Institute of Electrical and Electronics Engineers)

Bok

Proceeding 45th Annual Conference of the IEEE Industrial Electronics Society - IECON 2019

ISBN

9781728148786

Side(r)

7121 - 7128

Vis denne publikasjonen hos Nasjonalt Vitenarkiv