Til hovedinnhold
Norsk English

GANs enabled super-resolution reconstruction of wind field

Sammendrag

Atmospheric flows are governed by a broad variety of spatio-temporal scales,
thus making real-time numerical modeling of such turbulent flows in complex terrain at high
resolution computationally unmanageable. In this paper, we demonstrate a novel approach
to address this issue through a combination of fast coarse scale physics based simulator and a
family of advanced machine learning algorithm called the Generative Adversarial Networks. The
physics-based simulator generates a coarse wind field in a real wind farm and then ESRGANs
enhance the result to a much finer resolution. The method outperforms state of the art bicubic
interpolation methods commonly utilized for this purpose.
Les publikasjonen

Kategori

Vitenskapelig artikkel

Språk

Engelsk

Forfatter(e)

Institusjon(er)

  • SINTEF Digital / Mathematics and Cybernetics
  • Norges teknisk-naturvitenskapelige universitet
  • Oklahoma State University

År

2020

Publisert i

Journal of Physics: Conference Series (JPCS)

ISSN

1742-6588

Årgang

1669

Hefte nr.

012029

Vis denne publikasjonen hos Nasjonalt Vitenarkiv