Til hovedinnhold
Norsk English

Real time 3D observations of Portland Cement Carbonation at CO2 storage conditions

Sammendrag

Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.
Les publikasjonen

Kategori

Vitenskapelig artikkel

Oppdragsgiver

  • Research Council of Norway (RCN) / 267775
  • Research Council of Norway (RCN) / 243765
  • Research Council of Norway (RCN) / 275182
  • Research Council of Norway (RCN) / 262644

Språk

Engelsk

Forfatter(e)

  • Elvia Anabela Chavez Panduro
  • Benoit Cordonnier
  • Kamila Gawel
  • Ingrid Børve
  • Jaisree Iyer
  • Susan Carroll
  • Leander Edward Michels Brito Miranda
  • Melania Rogowska
  • Jessica Ann McBeck
  • Henning Osholm Sørensen
  • Stuart D.C. Walsh
  • Francois Renard
  • Alain Gibaud
  • Malin Torsæter
  • Dag Werner Breiby

Institusjon(er)

  • Norges teknisk-naturvitenskapelige universitet
  • SINTEF Energi AS / Gassteknologi
  • Universitetet i Oslo
  • European Synchrotron Radiation Facility
  • SINTEF Industri / Anvendt geovitenskap
  • Lawrence Livermore National Laboratory
  • Københavns Universitet
  • Danmarks Tekniske Universitet
  • Monash University
  • Université Grenoble Alpes
  • Université Nantes Angers Le Mans
  • Universitetet i Sørøst-Norge

År

2020

Publisert i

Environmental Science and Technology

ISSN

0013-936X

Årgang

54

Hefte nr.

13

Side(r)

8323 - 8332

Vis denne publikasjonen hos Cristin