Til hovedinnhold
Norsk English

Predictive Data Transformation Suggestions in Grafterizer Using Machine Learning

Sammendrag

Data preprocessing is a crucial step in data analysis. A substantial amount of time is spent on data transformation tasks such as data formatting, modification, extraction, and enrichment, typically making it more convenient for users to work with systems that can recommend most relevant transformations for a given dataset. In this paper, we propose an approach for generating relevant data transformation suggestions for tabular data preprocessing using machine learning (specifically, the Random Forest algorithm). The approach is implemented for Grafterizer, a Web-based framework for tabular data cleaning and transformation, and evaluated through a usability study.

Kategori

Vitenskapelig artikkel

Språk

Engelsk

Forfatter(e)

  • Salhia Sajid
  • Bjørn Marius von Zernichow
  • Ahmet Soylu
  • Titi Roman

Institusjon(er)

  • SINTEF Digital / Sustainable Communication Technologies
  • Universitetet i Oslo

År

2019

Publisert i

Communications in Computer and Information Science (CCIS)

ISSN

1865-0929

Årgang

1057 CCIS

Side(r)

137 - 149

Vis denne publikasjonen hos Nasjonalt Vitenarkiv