Til hovedinnhold
Norsk English

AUV Pipeline Following using Reinforcement Learning

Sammendrag

This paper analyzes the application of several reinforcement learning techniques for continuous state and action spaces to pipeline following for an autonomous underwater vehicle (AUV). Continuous space SARSA is compared to the actor-critic CACLA algorithm, and is also extended into a supervised reinforcement learning architecture. A novel exploration method using the skew-normal stochastic distribution is proposed, and evidence towards advantages in the case of tabula rasa exploration is presented. Results are validated on a realistic simulator of the AUV, and confirm the applicability of reinforcement learning to optimize pipeline following behavior.
Les publikasjonen

Kategori

Vitenskapelig kapittel

Språk

Engelsk

Forfatter(e)

Institusjon(er)

  • SINTEF Digital / Mathematics and Cybernetics
  • Norges teknisk-naturvitenskapelige universitet
  • Høgskulen på Vestlandet

År

2010

Forlag

VDE Verlag GmbH

Bok

Proceedings for the joint conference of ISR 2010, 41st International Symposium on Robotics, ROBOTIK 2010, 6th German Conference on Robotics

ISBN

9783800732739

Side(r)

310 - 317

Vis denne publikasjonen hos Nasjonalt Vitenarkiv