Til hovedinnhold
Norsk English

Addressing uncertainty in genome-scale metabolic model reconstruction and analysis

Sammendrag

The reconstruction and analysis of genome-scale metabolic models constitutes a powerful systems biology approach, with applications ranging from basic understanding of genotype-phenotype mapping to solving biomedical and environmental problems. However, the biological insight obtained from these models is limited by multiple heterogeneous sources of uncertainty, which are often difficult to quantify. Here we review the major sources of uncertainty and survey existing approaches developed for representing and addressing them. A unified formal characterization of these uncertainties through probabilistic approaches and ensemble modeling will facilitate convergence towards consistent reconstruction pipelines, improved data integration algorithms, and more accurate assessment of predictive capacity.
Les publikasjonen

Kategori

Vitenskapelig oversiktsartikkel

Språk

Engelsk

Forfatter(e)

  • David B. Bernstein
  • Snorre Sulheim
  • Eivind Almaas
  • Daniel Segrè

Institusjon(er)

  • SINTEF Industri / Bioteknologi og nanomedisin
  • Norges teknisk-naturvitenskapelige universitet
  • Boston University

Dato

18.02.2021

År

2021

Publisert i

Genome Biology

ISSN

1465-6906

Årgang

22

Side(r)

1 - 22

Vis denne publikasjonen hos Nasjonalt Vitenarkiv