To main content

Model reformulations for Work and Heat Exchange Network (WHEN) synthesis problems

Abstract

The Duran-Grossmann model can deal with heat integration problems with variable process streams. Work and Heat Exchange Networks (WHENs) represent an extension of Heat Exchange Networks. In WHEN problems, the identities of streams (hot/cold) are regarded as variables. The original Duran-Grossmann model has been extended and applied to WHENs without knowing the identity of streams a priori. In the original Duran-Grossmann model, the max operator is a challenge for solving the model. This paper analyzes four ways to reformulate the Duran-Grossmann model. Smooth Approximation, Explicit Disjunctions, Direct Disjunctions and Intermediate Temperature strategy are reviewed and compared. The Extended Duran-Grossmann model for WHEN problems consists of both binary variables and non-smooth functions. The Extended Duran-Grossmann model can be reformulated in similar ways. In this study, the performance of different reformulations of the Extended Duran-Grossmann model for WHEN problems are compared based on a small case study in this paper.
Read publication

Category

Academic article

Client

  • Research Council of Norway (RCN) / 257632

Language

English

Author(s)

Affiliation

  • Norwegian University of Science and Technology
  • SINTEF Energy Research / Gassteknologi

Year

2019

Published in

Computers and Chemical Engineering

ISSN

0098-1354

Publisher

Pergamon Press

Volume

125

Page(s)

89 - 97

View this publication at Cristin