To main content

On Obtaining Optimal Well Rates and Placement for CO2 Storage


Large-scale storage of CO2 in saline aquifers is considered an essential technology to mitigate CO2 emissions. Storage potential has mainly been estimated based on volumetrics or detailed simulations for specific injection scenarios. In practice, achievable storage capacity will depend on engineering, economical, and political restrictions and be limited by the length of the injection period, costs associated with potential CO2 leakage, pressure management, etc. We show how achievable storage volumes can be estimated and maximized using adjoint-based optimization and a hierarchy of simulation methods. In particular, vertical equilibrium models provide the simplest possible description of the flow dynamics during the injection and early post-injection period, while percolation type methods provide effective means for forecasting the long-term fate of CO2 during the later migration stages. We investigate the storage volumes that can be achieved for several formations found along the Norwegian Continental Shelf by optimizing well placement and injection rates, using production wells for pressure management when necessary. Optimal strategies are obtained under various objectives and simple but realistic constraints, namely: penalization of CO2 leakage, minimization of well cost, and restriction of pressure buildup.


Academic chapter/article/Conference paper


  • Research Council of Norway (RCN) / 243729




  • SINTEF Digital / Mathematics and Cybernetics




European Association of Geoscientists and Engineers (EAGE)


ECMOR XV - Proceedings of 15th European Conference on the Mathematics of Oil Recovery, Amsterdam, Netherlands, 29 August - 1 September, 2016



View this publication at Cristin