To main content

Method using a density-energy state function with a reference equation of state for fluid-dynamics simulation of vapor-liquid-solid carbon dioxide

Abstract

With the advent of CO2 capture and storage (CCS) as an important remedy for reducing atmospheric CO2 emissions, it has become necessary to develop accurate and efficient simulation tools. Among other things, such tools should handle the depressurization from supercritical pressures down to atmospheric conditions. This might involve the formation of solid CO2 (dry ice) as the state passes the triple point. In this work, we propose a dynamic simulation method that handles the dry-ice formation. The method uses the Span--Wagner reference equation of state, with additional relations for thermodynamic properties along the sublimation line. A density-energy state function formulation is employed, which naturally follows from mass and energy conservation. To illustrate the method's capabilities, demanding test cases are considered, both for the depressurization of a vessel and for fluid dynamics in a pipeline, where phase change occurs due to changing boundary conditions.

Category

Academic article

Client

  • Research Council of Norway (RCN) / 193816
  • Own institution / 16X89331

Language

English

Affiliation

  • SINTEF Energy Research / Gassteknologi

Year

2013

Published in

Industrial & Engineering Chemistry Research

ISSN

0888-5885

Publisher

American Chemical Society (ACS)

Volume

52

Issue

29

Page(s)

9965 - 9978

View this publication at Cristin