Abstract
Agrivoltaics, also known as solar sharing or agri-PV, represents a pioneering con- cept that seeks to optimise land use by combining agriculture with photovoltaics on the same land area. While research and development on this topic have increased significantly, few studies address the issue in the Continental Subarctic Climate zone. In this paper, we report on the modelling and installation of a 48 kWp agrivoltaic system at the Skjetlein High School in Trondheim (Norway, lat. 63.34), which is currently the highest latitude system in the World, and we present the initial results of the impacts of the system on Timothy grass biomass. This work takes the first steps towards realising agrivoltaic opportunities for a broad area of Norwegian agriculture.