To main content

Reliable and Efficient Application of New Energy Vehicles in China and Norway

The primary objective of the Norwegian research activities is to enable more accessible and seamless opportunity charging for electric vehicles in cold climate while improving battery ageing prospects.

Contact person

This project focuses on induction charging for buses and high power inductive charging in particular. Similar to how one can put one's cellular phone on an induction board and having it charging immediately (compared to fiddling with cables, sockets, etc.), one can also charge buses using inductive charging momentaneously when they arrive at a bus stop. If so, the buses can be in charging mode before the bus has even stopped, and to the point when they drive on.

Result:

The currently developed technology so far allows only for moderate charging power and this project aims to develop open knowledge for how high power inductive charging can be realised for buses.

If a bus charges 10-30 seconds extra per charging at 500 kW, these buses gain 30% more daily driving range, and the operators won't need extra buses. Thus this project contributes to cheaper bus service for everyone.

This project will contribute to the development and utilisation of technology for electrification of transportation systems with the purpose of reducing greenhouse gas emissions and local pollution. The Norwegian part of the project will include research activities within three main areas, including

  • power system modelling, infrastructure planning and big data analysis for estimation of power requirements and load profiles for electric vehicle charging infrastructure.
  • Development of design methodologies and control strategies for wireless power transfer systems that can enable efficient and flexible opportunity charging at high power levels.
  • Evaluation of degradation mechanisms for batteries under cold climate conditions and parameter estimation for design of battery management systems.

The Norwegian research activities will be closely coordinated with the planned activities of the Chines partners. Successful results from the project will also form the basis for joint initiatives for obtaining external funding or support for large-scale demonstration of technology to be developed by the Chinese industry partners. The applications will enable significant personnel mobility by exchange stays of young researchers. A total of 4 joint workshops will be organised during the project (2 each in China and Norway) to support the coordination and integration of joint research activities among the Chinese and Norwegian partners. PhD students and postdoctoral fellows are expected to make use of well facilitated opportunities for scientifically relevant exchanges for 3-6 months.

Project leaders:

Odne Stokke Burheim, Norwegian University of Science and Technology
Junjun Deng, Beijing Institute of Technology


The project is organized in 3 Work Packages (WPs) on Norwegian side and 5 WPs on Chinese side

Norway:

  • WP1 – Monitoring, information exchange system, and charging infrastructure – Olav Bjarte Fosso, NTNU and Bendik Torsæter, SINTEF
  • WP2 – Wireless Charging System  Guiseppe Guidi and John Are Suul both SINTEF
  • WP3 – Battery modelling and measurements; Comparative investigation of NEVs policies Preben Vie and Jonsong Hua, both IFE

China:

  • WP1 – Battery Technology for EVs – Lei Zhang, BIT
  • WP2 – Terminal Device and Information Platform for EVs – Baoxuan An, BITNEI
  • WP3 – Wireless Charging TechnologyLantian Li, QIZNET
  • WP4 - Electric Bus Demonstration, BYD Europ E.V.
  • WP5 - Electric Passenger Cars Demonstration, Heng Wang, Chary New Energy Auto
  • WP6 - Policy Investigation of NEVs industry, Liu Di, Beijing CATARC Science and Technology Center Co.

This is a Knowledge-building Project for Industry partly financed by the Research Council of Norway


Keytech-NeVe-Chino project description in Chinese 更多有关KeyTech-NeVe-ChiNo项目介绍请点击 (PDF)

Key Factors

Project duration

2020 - 2023