To main content

Post-processing enhancement of reverberation-noise suppression in dual-frequency SURF imaging

Abstract

A post-processing adjustment technique to enhance dual-frequency second-order ultrasound field (SURF) reverberation-noise suppression imaging in medical ultrasound is analyzed. Two variant methods are investigated through numerical simulations. They both solely involve post-processing of the propagated high-frequency (HF) imaging wave fields, which in real-time imaging corresponds to post-processing of the beamformed receive radio-frequency signals. Hence, the transmit pulse complexes are the same as for the previously published SURF reverberation-suppression imaging method. The adjustment technique is tested on simulated data from propagation of SURF pulse complexes consisting of a 3.5-MHz HF imaging pulse added to a 0.5-MHz low-frequency soundspeed manipulation pulse. Imaging transmit beams are constructed with and without adjustment. The post-processing involves filtering, e.g., by a time-shift, to equalize the two SURF HF pulses at a chosen depth. This depth is typically chosen to coincide with the depth where the first scattering or reflection occurs for the reverberation noise one intends to suppress. The beams realized with post-processing show energy decrease at the chosen depth, especially for shallow depths where, in a medical imaging situation, a body-wall is often located. This indicates that the post-processing may further enhance the reverberation- suppression abilities of SURF imaging. Moreover, it is shown that the methods might be utilized to reduce the accumulated near-field energy of the SURF transmit-beam relative to its imaging region energy. The adjustments presented may therefore potentially be utilized to attain a slightly better general suppression of multiple scattering and multiple reflection noise compared with non-adjusted SURF reverberation-suppression imaging.

Category

Academic article

Language

English

Author(s)

  • Sven Peter Näsholm
  • Rune Hansen
  • Bjørn Atle J. Angelsen

Affiliation

  • Norwegian University of Science and Technology
  • SINTEF Digital / Health Research

Year

2011

Published in

IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control

ISSN

0885-3010

Volume

58

Issue

2

Page(s)

338 - 348

View this publication at Cristin