To main content

Experimental and numerical study on hydrogen-induced failure of X65 pipeline steel

Abstract

Hydrogen-induced fracture of X65 pipeline steel under in-situ electrochemical charging is investigated by using in situ slow strain-rate tensile (SSRT) test, hydrogen diffusion test, fractography analysis, and finite element simulation. Smooth and notched tensile specimens with a range of notch radii, are tested to reveal the influence of stress triaxiality on hydrogen embrittlement (HE) sensitivity. A fully coupled model, H-CGM+ implemented in ABAQUS, capable of simulating the interplay between hydrogen-enhanced plasticity and decohesion, is employed. Both the global stress-strain curves and the local failure initiation sites of the in situ SSRT tests are well captured by the simulation. It is found that HE is dominated by dislocation trapping hydrogen, with crack initiation occurring at the notch surface where local plastic strain is maximized, followed by propagation towards the sample center. Surprisingly, HE susceptibility decreases with increasing stress triaxiality. A hydrogen-induced failure criterion, as a critical combination of hydrogen concentration and local plastic strain is derived. The hydrogen-induced failure criterion is independent of stress triaxiality, which can be a good reference for the safety assessment of hydrogen pipelines.

Category

Academic article

Client

  • Research Council of Norway (RCN) / 309378
  • Research Council of Norway (RCN) / 294689
  • Research Council of Norway (RCN) / 294739

Language

English

Author(s)

Affiliation

  • Norwegian University of Science and Technology
  • Unknown
  • SINTEF Industry / Materials and Nanotechnology

Year

2024

Published in

Materials Science & Engineering: A

ISSN

0921-5093

Publisher

Elsevier

Volume

894

View this publication at Cristin