To main content

Classification of kneeling and squatting in workers wearing protective equipment: development and validation of a rule-based model using wireless triaxial accelerometers

Abstract

Several professions in industries, such as petroleum, manufacturing, construction, mining, and forestry require prolonged work tasks in awkward postures, increasing workers’ risks for musculoskeletal pain and injury. Therefore, we developed and validated a rule-based model for classifying unilateral and bilateral kneeling and squatting based on 15 individuals wearing personal protective equipment and using three wireless triaxial accelerometers. The model provided both high sensitivity and specificity for classifying kneeling (0.98; 0.98) and squatting (0.96; 0.91). Hence, this model has the potential to contribute to increased knowledge of physical work demands and exposure thresholds in working populations with strict occupational safety regulations.

Practitioner summary: Our results indicate that this rule-based model can be applied in a human-factors perspective enabling high-quality quantitative information in the classification of occupational kneeling and squatting, known risk factors for musculoskeletal pain, and sick leave. This study is adapted for working populations wearing personal protective equipment and aimed for long-term measurements in the workplace.
Read the publication

Category

Academic article

Language

English

Author(s)

  • Svein Ove Tjøsvoll
  • Trine Margrethe Seeberg
  • Marius Steiro Fimland
  • Øystein Wiggen
  • Silje Ekroll Jahren

Affiliation

  • SINTEF Digital / Health Research
  • SINTEF Digital / Smart Sensors and Microsystems
  • Norwegian University of Science and Technology
  • Unicare

Year

2022

Published in

Ergonomics

ISSN

0014-0139

Volume

65

Issue

10

View this publication at Norwegian Research Information Repository