To main content

Improved in-line vortex-induced vibrations prediction for combined in-line and cross-flow vortex-induced vibrations responses

Improved in-line vortex-induced vibrations prediction for combined in-line and cross-flow vortex-induced vibrations responses

Category
Academic article
Abstract
Slender marine structures are subjected to ocean currents, which can cause vortex-induced vibrations (VIV). Accumulated damage due to VIV can shorten the fatigue life of marine structures, so it needs to be considered in the design and operation phase. Semi-empirical VIV prediction tools are based on hydrodynamic coefficients. The hydrodynamic coefficients can either be calculated from experiments on flexible beams by using inverse analysis or theoretical methods, or obtained from forced motion experiments on a circular cylinder. Most of the forced motion experiments apply harmonic motions in either in-line (IL) or crossflow (CF) direction. Combined IL and CF forced motion experiments are also reported. However, measured motions from flexible pipe VIV tests contain higher order harmonic components, which have not yet been extensively studied. This paper presents results from conventional forced motion VIV experiments, but using measured motions taken from a flexible pipe undergoing VIV. The IL excitation coefficients were used by semi-empirical VIV prediction software vivana to perform combined IL and CF VIV calculation. The key IL results are compared with Norwegian Deepwater Programme (NDP) flexible pipe model test results. By using present IL excitation coefficients, the prediction of IL responses for combined IL and CF VIV responses is improved.
Language
English
Author(s)
Affiliation
  • SINTEF Ocean / Energi og transport
  • Norwegian University of Science and Technology
Year
Published in
Journal of Offshore Mechanics and Arctic Engineering
ISSN
0892-7219
Volume
140
Issue
3