To main content

A Dynamic Component Model for Cyber Physical Systems

Abstract

Cyber Physical Systems (CPS) offer new ways for people to interact with computing systems: every thing now inte- grates computing power that can be leveraged to provide safety, assistance, guidance or simply comfort to users. CPS are long living and pervasive systems that intensively rely on microcontrollers and low power CPUs, integrated into build- ings (e.g. automation to improve comfort and energy opti- mization) or cars (e.g. advanced safety features involving car-to-car communication to avoid collisions). CPS operate in volatile environments where nodes should cooperate in opportunistic ways and dynamically adapt to their context. This paper presents ¼-Kevoree, the projection of Kevoree (a component model based on models@runtime) to microcon- trollers. ¼-Kevoree pushes dynamicity and elasticity con- cerns directly into resource-constrained devices. Its evalua- tion regarding key criteria in the embedded domain (mem- ory usage, reliability and performance) shows that, despite a contained overhead, ¼-Kevoree provides the advantages of a dynamically reconfigurable component-based model (safe, fine-grained, and efficient reconfiguration) compared to tra- ditional techniques for dynamic firmware upgrades.

Category

Academic chapter/article/Conference paper

Language

English

Author(s)

  • Francois Fouquet
  • Brice Morin
  • Franck Fleurey
  • Olivier Barais
  • Noël Plouzeau
  • Jean-Marc Jezequel

Affiliation

  • University of Rennes I
  • SINTEF Digital / Sustainable Communication Technologies

Year

2012

Publisher

Association for Computing Machinery (ACM)

Book

CBSE '12 Proceedings of the 15th ACM SIGSOFT symposium on Component Based Software Engineering

ISBN

978-1-4503-1345-2

Page(s)

135 - 144

View this publication at Cristin