Marie-Laure Fontaine
Research Manager
Marie-Laure Fontaine
Research Manager
Publications and responsibilities
Microstructural and compositional optimization of La0.5Ba0.5CoO3−δ —BaZr1−zYzO3−δ (z = 0, 0.05 and 0.1) nanocomposite cathodes for protonic ceramic fuel cells
Cathodes are one of the key components of protonic ceramic fuel cells (PCFCs) requiring further development to enhance the performance of PCFCs. This encompasses the optimization of material compositions and microstructures, as well as a further understanding of the electrode processes. Here, a...
Compositional Engineering of a La1-xBaxCoO3-δ-(1-a) BaZr0.9Y0.1O2.95 (a = 0.6, 0.7, 0.8 and x = 0.5, 0.6, 0.7) Nanocomposite Cathodes for Protonic Ceramic Fuel Cells
Compositionally engineered a La1-xBaxCoO3-δ-(1-a) BaZr0.9Y0.1O2.95 (a = 0.6, 0.7, 0.8 and x = 0.5, 0.6, 0.7) (LBZ) nanocomposite cathodes were prepared by oxidation driven in situ exsolution of a single-phase material deposited on a BaZr0.9Y0.1O2.95 electrolyte. The processing procedure of the...
Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers
Supported molten-salt membranes for carbon dioxide permeation
Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution
La0.5Ba0.5CoO3-δ-BaZrO3 (LB-BZ)-based composite materials were prepared by a modified Pechini sol-gel method combined with exsolution. Two different LB-BZ composites were prepared through two alternative thermal treatments of the precursor gel. A metastable single phase with perovskite crystal...