To main content

Photoionization model for streamer propagation mode change in simulation model for streamers in dielectric liquids

Photoionization model for streamer propagation mode change in simulation model for streamers in dielectric liquids

Category
Journal publication
Abstract
Radiation is important for the propagation of streamers in dielectric liquids. Photoionization is a possibility, but the effect is difficult to differentiate from other contributions. In this work, we model radiation from the streamer head, causing photoionization when absorbed in the liquid. We find that photoionization is local in space (μm-scale). The radiation absorption cross section is modeled considering that the ionization potential (IP) is dependent on the electric field. The result is a steep increase in the ionization rate when the electric field reduces the IP below the energy of the first electronically excited state, which is interpreted as a possible mechanism for changing from slow to fast streamers. By combining a simulation model for slow streamers based on the avalanche mechanism with a change to fast mode based on a photoionization threshold for the electric field, we demonstrate how the conductivity of the streamer channel can be important for switching between slow and fast streamer propagation modes.
Client
  • Norges forskningsråd / 228850
Language
English
Author(s)
Affiliation
  • Norwegian University of Science and Technology
  • SINTEF Energy Research / Elkraftteknologi
  • ABB
Year
2020
Published in
Plasma Research Express
ISSN
2516-1067
Volume
2