To main content

Masonry’s Resistance to Driving Rain: Mortar Water Content and Impregnation

Masonry’s Resistance to Driving Rain: Mortar Water Content and Impregnation

Category
Academic article
Abstract
Alongside well-researched themes such as water and moisture, the service life and function of masonry veneers are often compromised by precipitation combined with poor design considerations, execution, and selection of materials. Little research has been carried out on the subject of the impact of mortar consistency on masonry’s resistance to driving rain. Water-repellent (WR) impregnation is typically considered a quick fix when problems occur. Wall-panels of 1 m2 built with different flow table values for the mortar have been tested in a driving rain chamber, where both time-lapse videos and the measuring of penetrated water are used to evaluate performance. Subsequently, the panels were impregnated with the most common types of WR products andre-tested. The analysis shows that changing the mortar mix from dry to wet can decrease the penetration of driving rain by a factor of ten. The test results presented in this article show that mortar with low water content gives a porous interfacial transition zone (ITZ), thereby increasing the rate of water penetration. The tested WRs are found to be ineffective in increasing masonry’s resistance to high pressure driving rain. The results, combined with what is already known about WR treatments on masonry, call for careful consideration before applying such treatment. This proves especially true in countries with much driving rain followed by frequent freeze-thaw cycles.
Client
  • Research Council of Norway (RCN) / 237859
Language
English
Author(s)
Affiliation
  • Norwegian University of Science and Technology
  • SINTEF Community / Architecture, Materials and Structures
  • SINTEF Community / Infrastructure
Year
2017
Published in
Buildings
ISSN
2075-5309
Publisher
MDPI
Volume
7
Issue
3