Abstract
The ultrasonic pulse-echo (PE) measurement is a crucial measurement technique to determine the integrity of oil and gas wells. Oil companies use various analysis techniques and corrections to derive the pipe thickness and impedance of the material behind the pipe from PE measurements that are carried out inside the pipe. While some field measurements are publicly available, they have no corresponding ground truth. We therefore simulated a dataset of PE measurements with ground truth. The dataset was generated using axisymmetric models and 3D models in COMSOL Multiphysics. The base geometry was based on common parameters from the field: oil-based mud on the inside of a 9.625 in pipe and cement on the outside of the pipe. From this base geometry, variations in the model parameters were introduced, for example, plate/pipe wall thickness, different materials on both sides of the wall, different pipe diameter, different annulus thicknesses, eccentering. The generated dataset allows detailed investigations of existing PE analysis algorithms, comparison of those and development of new PE analysis techniques.