To main content

Understanding the hydrological performance of green and grey roofs during winter in cold climate regions

Abstract

Green and grey roofs have emerged as promising and sustainable measures for effectively managing stormwater in urban catchments. However, there is a gap in the literature in understanding and modelling the hydrological performance of these roofs during winter and snow-covered periods in cold climate regions. The present study attempted to address this gap by validating the use of a snow module in simulating the dynamics of snow accumulation and melting of green and grey roofs. Then, the validated model was used to identify and separate the different events that occur in winter (melt only, rainfall only, rain-on-snow) to assess the hydrological performance of six different configurations of green and grey roofs in Trondheim, Norway. The snow module accurately simulated snow accumulation and melting of green and grey roofs. The results showed that rain-on-snow events in winter have longer duration compared to other events including rainfall events in summer. Consequently, rain-on-snow events yield a higher amount of inflow to the roofs compared to rainfall events in summer, despite summer events having higher intensities. The retention and detention performances of green and grey roofs were found to be lowest for rain-on-snow events compared to other types of events, but still yielding significantly lower peak runoffs when compared to standard black roofs. The decrease in retention and detention performances in winter were attributed to the long duration of events, accumulation effect of snow, freezing of roof surface layers, and reduction of evapotranspiration. The study highlights the importance of considering winter conditions in the design of green and grey roofs in cold climates to enhance stormwater management.
Read the publication

Category

Academic article

Language

English

Affiliation

  • SINTEF Community / Infrastructure
  • Norwegian University of Science and Technology

Year

2024

Published in

Science of the Total Environment

ISSN

0048-9697

Volume

945

View this publication at Norwegian Research Information Repository