To main content

A new power prediction method using ship in-service data: a case study on a general cargo ship

Abstract

To increase energy efficiency and reduce greenhouse gas (GHG) emissions in the shipping industry, an accurate prediction of the ship performance at sea is crucial. This paper proposes a new power prediction method based on minimizing a normalized root mean square error (NRMSE) defined by comparing the results of the power prediction model with the ship in-service data for a given vessel. The result is a power prediction model tuned to fit the ship for which in-service data was applied. A general cargo ship is used as a test case. The performance of the proposed approach is evaluated in different scenarios with the artificial neural network (ANN) method and the traditional power prediction models. In all studied scenarios, the proposed method shows better performance in predicting ship power. Up to 86% percentage difference between the NRMSEs of the best and worst power prediction models is also reported.
Read the publication

Category

Academic article

Language

English

Author(s)

Affiliation

  • SINTEF Ocean / Skip og havkonstruksjoner
  • Chalmers University of Technology
  • Norwegian University of Science and Technology
  • Diverse norske bedrifter og organisasjoner

Year

2023

Published in

Ship Technology Research

ISSN

0937-7255

View this publication at Norwegian Research Information Repository