To main content

Evaluation of low-cost formaldehyde sensors calibration

Abstract

Low-cost sensors (LCS) are becoming ubiquitous in the market; however, calibration is needed before reliable use. An evaluation of the calibration of eight identical pre-calibrated formaldehyde LCS is presented here. The LCS and a reference instrument were exposed to a pollutant source(s) for the calibration measurements. After one year, some tests were repeated to check the drift and stability of calibration. This paper presents methodologies for calibration using data with significant autocorrelations. Autocorrelation in sensor measurements might be present when performing a frequent sampling. To obtain reliable results, sensor calibration methodologies must consider autocorrelation or serial correlation between subsequent measurements. Experimental design can be used to reduce the risk of highly autocorrelated measurement. Ordinary Least Squares Estimations should not be used when measurements are autocorrelated, as their central assumption is that the residuals are independent and identically distributed. Two alternative methods considering autocorrelation using a first-order Markov scaling are proposed: Maximum Likelihood and Restricted Maximum Likelihood Estimation (REML). REML has better compensations for the estimated parameters and the scaling parameters. Akaike information criterion was used to select the most significant parameters resulting in formaldehyde and temperature. The results were presented for only one of the eight sensors. According to EPA's recommendations, the tested formaldehyde LCSs were Tier III, supplementary monitoring. The LCS over-and under-estimated the values obtained by the reference sensor, but they presented very similar dynamic responses, indicating that LCS could be used to detect concentration changes after calibration.
Read the publication

Category

Academic article

Language

English

Author(s)

  • Maria Justo Alonso
  • Henrik Madsen
  • Peng Liu
  • Rikke Bramming Jørgensen
  • Thomas Berg Jørgensen
  • Even Johan Christiansen
  • Olav Aleksander Myrvang
  • Diane Bastien
  • Hans Martin Mathisen

Affiliation

  • SINTEF Community / Architecture, Materials and Structures
  • Technical University of Denmark
  • University of Southern Denmark
  • Norwegian University of Science and Technology

Year

2022

Published in

Building and Environment

ISSN

0360-1323

Volume

222

View this publication at Norwegian Research Information Repository