To main content

Increasing the thermal expansion of proton conducting Y-doped BaZrO3 by Sr and Ce substitution

Abstract

Proton conducting oxide electrolytes find potential application in proton ceramic fuel cells and electrolyzers operating at intermediate temperatures, e.g. 400–600 °C. However, state-of-the-art proton conducting ceramics based on Y-doped BaZrO3 (BZY) have lower thermal expansion coefficient (TEC) than most commonly applied or conceived supporting electrode structures, making the assembly vulnerable to degradation due to cracks or spallation. We have increased the TEC of 20 mol% Y-doped BZY (BZY20) by partially substituting Ba and Zr with Sr and Ce, respectively, to levels which still maintain the cubic structure and sufficiently minor n-type conduction; (Ba0.85Sr0.15)(Zr0.7Ce0.1Y0.2)O2.9 (BSZCY151020). High temperature XRD shows that this material has a cubic structure (space group ) in the temperature range of 25–1150 °C and a linear TEC of ~10 × 10−6 K−1, as compared to the ~8 × 10−6 K−1 for BZY. It exhibited a DC conductivity of ~5 mS cm−1 at 600 °C in wet H2. This electrolyte with increased TEC may find application in proton ceramic electrochemical cells in general and metal supported ones in particular.
Read the publication

Category

Academic article

Language

English

Author(s)

Affiliation

  • SINTEF Industry / Sustainable Energy Technology
  • University of Oslo

Year

2021

Published in

Solid State Ionics

ISSN

0167-2738

Volume

359

View this publication at Norwegian Research Information Repository