To main content

Pathways to low-cost clean hydrogen production with gas switching reforming

Abstract

Gas switching reforming (GSR) is a promising technology for natural gas reforming with inherent CO2 capture. Like conventional steam methane reforming (SMR), GSR can be integrated with water-gas shift and pressure swing adsorption units for pure hydrogen production. The resulting GSR-H2 process concept was techno-economically assessed in this study. Results showed that GSR-H2 can achieve 96% CO2 capture at a CO2 avoidance cost of 15 $/ton (including CO2 transport and storage). Most components of the GSR-H2 process are proven technologies, but long-term oxygen carrier stability presents an important technical uncertainty that can adversely affect competitiveness when the material lifetime drops below one year. Relative to the SMR benchmark, GSR-H2 replaces some fuel consumption with electricity consumption, making it more suitable to regions with higher natural gas prices and lower electricity prices. Some minor alterations to the process configuration can adjust the balance between fuel and electricity consumption to match local market conditions. The most attractive commercialization pathway for the GSR-H2 technology is initial construction without CO2 capture, followed by simple retrofitting for CO2 capture when CO2 taxes rise, and CO2 transport and storage infrastructure becomes available. These features make the GSR-H2 technology robust to almost any future energy market scenario.
Read the publication

Category

Academic article

Language

English

Author(s)

Affiliation

  • SINTEF Industry / Process Technology
  • Royal Institute of Technology
  • Norwegian University of Science and Technology

Year

2020

Published in

International Journal of Hydrogen Energy

ISSN

0360-3199

Page(s)

1 - 17

View this publication at Norwegian Research Information Repository