To main content

Role of Adsorbate Coverage on the Oxygen Dissociation Rate on Sr-Doped LaMnO3 Surfaces in the Presence of H2O and CO2

Abstract

Sr-doped LaMnO3 (LSM) is a promising oxygen reduction reaction electrocatalyst in solid oxide fuel cells and other electrochemical devices. The presence of CO2 and H2O has been reported to promote the oxygen dissociation reaction on LSM surfaces. Here, we investigate the coadsorption mechanism of O2 with H2O or CO2 by combining first-principles calculations of the (0 0 1) surface containing 25–100% Sr with thermodynamic adsorption models. The molecules were found to chemisorb by formation of charged oxygen, hydroxide, and carbonate species, and the adsorption energies were exothermic up to monolayer coverage. Low concentrations of H2O or CO2 do not compete with O2 for adsorption sites under relevant conditions. However, their presence contributes to the total amount of oxygen-containing species. The increased coverage of oxygen species provides a quantitative explanation for the reported enhancement in oxygen dissociation kinetics in the presence of H2O/CO2. This study thereby provides insights into oxygen exchange mechanisms on LSM surfaces.
Read the publication

Category

Academic article

Language

English

Author(s)

  • Jing Yang
  • Jonathan Marc Polfus
  • Zuoan Li
  • Harry Tuller
  • Bilge Yildiz

Affiliation

  • SINTEF Industry / Sustainable Energy Technology
  • Massachusetts Institute of Technology (MIT)

Year

2020

Published in

Chemistry of Materials

ISSN

0897-4756

Volume

32

Issue

13

Page(s)

5483 - 5492

View this publication at Norwegian Research Information Repository