To main content

Rational design of mixed solvent and porous graphene-supported spinel oxide electrodes for high-rate and long cycle-life Mg batteries

Abstract

The development of Mg batteries based on the interfacial charge storage mechanism, where the capacity originates from capacitive processes and the solvent-related interfacial reactions, could efficiently circumvent the challenge of intercalation-based Mg batteries with sluggish kinetics. In this work, the proposed Mg organohaloaluminate mixture electrolyte is reported to improve the charge storage performance of the graphene-supported cathodes, resulting in both high cycling stability (91% capacity retention after 2000 cycles) and high rate capability (51% capacity retention when the current density increases by 100 times). The experimental and computational studies have revealed that the exceptional cell performance originates from the optimized electrode/electrolyte interface, where the highly reversible interfacial reactions occur with the 1,2-dimethoxyethane additive in the typical all-phenyl complex electrolyte. The fast charge-transfer kinetics along the surface of highly porous and conductive graphene-supported electrodes have also been observed.

Category

Academic article

Language

English

Author(s)

  • Lu Wang
  • Yuanlong Shao
  • Bo Jiang
  • Anne Fiksdahl
  • Kaushik Jayasayee

Affiliation

  • SINTEF Industry / Sustainable Energy Technology
  • Norwegian University of Science and Technology
  • Suzhou University

Year

2019

Published in

ACS Applied Materials & Interfaces

ISSN

1944-8244

Volume

11

Issue

41

Page(s)

37595 - 37601

View this publication at Norwegian Research Information Repository