To main content

Analysing electricity demand in neighbourhoods with electricity generation from solar power systems: A case study of a large housing cooperative in Norway

Abstract

An energy management system can be introduced on a neighbourhood level, to achieve energy goals such as increased self-consumption of locally produced energy. In this case-study, electricity generation from photovoltaic (PV) systems is simulated at Risvollan housing cooperative, a large housing cooperative in Norway. The electricity generation from PV systems of different orientations and capacities are analysed with the electricity load. Key performance indicators (KPIs) such as self-generation, self-consumption and generation multiple are described, based on hourly values. The electricity generation from the south-oriented building façade PV systems are about 5-6% higher than for the east-west oriented rooftop PV systems on an annual basis, since the façade PV systems generate more electricity in the spring and autumn. The self-consumption factor is the most important KPI in Norway, due to the national tariff structure. For the total housing cooperative, a PV capacity of about 1,000 kWp seem suitable, giving a self-consumption factor of 97% for a rooftop system, based on 2018 electricity and climate data. From the perspective of the housing cooperative, it is financial beneficial to aggregate electricity loads for common areas and apartments, since a higher share of the electricity can be used by the cooperative. For this to be possible, also housing cooperatives with PV must be facilitated for in the prosumer agreement. Comparing a single 1,100 kWp PV system providing electricity to the total cooperative with 22 PV systems of 50 kWp behind 22 garage meters, the self-consumption factor decreases from 95% to average 14%, resulting in a 41% lower financial value for the PV electricity.
Read the publication

Category

Academic article

Language

English

Author(s)

  • Åse Lekang Sørensen
  • Igor Sartori
  • Karen Byskov Lindberg
  • Inger Andresen

Affiliation

  • SINTEF Community / Architectural Engineering
  • Norwegian University of Science and Technology

Year

2019

Published in

IOP Conference Series: Earth and Environmental Science (EES)

ISSN

1755-1307

Volume

352

Issue

1

Page(s)

1 - 9

View this publication at Norwegian Research Information Repository