To main content

COMPARISON OF PARTICLE-RESOLVED DIRECT NUMERICAL SIMULATION AND 1D MODELLING OF CATALYTIC REACTIONS IN A PACKED BED

Abstract

The work presents a comparison of catalytic gas-solid reactions in a packed bed as simulated on two widely different scales: direct numerical simulation (capable of accurately predicting transfer phenomena in and around a few particles) and 1D modelling (capable of engineering simulations of industrial scale reactors). Particle-resolved direct numerical simulation (PR-DNS) is performed on a small geometry containing ~100 realistically packed monodisperse spherical particles generated via the discrete element method (DEM). These results are compared to a 1D packed bed reactor model using the effectiveness factor approach to account for intra-particle mass transfer and a suitable closure for gas-particle heat transfer. The differences between the results from the two modelling approaches are quantified over a range of Thiele moduli, Prandtl numbers and reaction enthalpies. Results showed that existing 1D-model closures perform well for a simple first order catalytic reaction. Heat transfer completely dominates the overall reaction system when large reaction enthalpies are simulated, while mass transfer limitations dominate at low reaction enthalpies. Future work will extend this comparative approach to packings with more complex particle shapes and complex reactions.
Read the publication

Category

Academic chapter

Language

English

Author(s)

  • Arpit Singhal
  • Schalk Cloete
  • Stefan Radl
  • Roas Quinta-Ferreira
  • Shahriar Amini

Affiliation

  • SINTEF Industry / Process Technology
  • University of Coimbra
  • Austria
  • Norwegian University of Science and Technology

Year

2017

Publisher

SINTEF akademisk forlag

Book

Progress in Applied CFD – CFD2017 Selected papers from 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries

ISBN

9788253615448

Page(s)

667 - 674

View this publication at Norwegian Research Information Repository