To main content

Catalysis in microstructured reactors - Short review on smallscale syngas production and further conversion into methanol, DME and Fischer-Tropsch products

Abstract

Synthesis gas production and further conversion via the Fischer-Tropsch, methanol and dimethyl ether (DME) syntheses is currently economic only in the large scale. Compact, modular, and safe technology efficient in smaller scale would enable utilizing smaller natural gas fields, bio-syngas and even off-shore associated gas that otherwise would be flared or re-injected. So-called or microstructured reactors with superior heat and mass transfer properties and scalability by parallelization may offer opportunity for process intensification and different investment risk. Here, we summarize research into the performance of different combinations of catalyst properties and microchannel design. We find that intensified production of synthesis gas by steam reforming or catalytic partial oxidation remains associated with significant challenges to the reactor design, the catalysis and the materials. With respect to synthesis of methanol, DME or Fischer-Tropsch products, using a microchannel packed-bed with integrated heat exchange, the results are definitely more encouraging, enabling the use of highly active catalysts and severe process conditions without sacrificing on selectivity and stability.
Read the publication

Category

Academic article

Language

English

Author(s)

  • Hilde Johnsen Venvik
  • Jia Yang

Affiliation

  • SINTEF Industry
  • Norwegian University of Science and Technology

Year

2017

Published in

Catalysis Today

ISSN

0920-5861

Volume

285

Page(s)

135 - 146

View this publication at Norwegian Research Information Repository