The objective of WP2 is to develop and test a set of new concepts and solutions that optimally utilise new emerging control and monitoring technologies capable of exploiting extensive, real time monitoring to/from all assets and network customers and flexible resources. The expected impact is a more flexible operation of the distribution grid, contributing to cost reductions, enhanced energy efficiency and improved system reliability and security, as well as standardised solutions.

  • Application of new sensors and controllers for distribution system management
  • Architecture for future monitoring and control
  • Use cases for future (2030-2040) smart distribution grid operation
  • Use Case for Communication interoperability, ICT security and privacy (CIIP)
  • Smart distribution system control centres

Results 2018

Modelling consequences on security of supply by extensive use of ieds

When introducing Intelligent Electronic Devices (IEDs, with microprocessors and communication interfaces) we get new possibilities for operation support ( censoring, remote control, self-healing), but also a set of new fault cases and failure modes that need to be carefully investigated. The work on a theoretical model (analytical and/or simulation) for a system of such IEDs is started and will be continued in 2019. The goal is to be able to quantify the effect on security of electricity supply of different constellations of sensors and controllers, and distributed vs centralised control and self-healing solutions.

Evaluating local disaster recovery strategies

Different options for temporal replacement/relocation of communication equipment are investigated, to maintain a minimum of communication service after a disaster, for example by temporarily replacing damaged nodes by emergency nodes. Communication services are of critical importance in situations where a lot of coordination needs to be done, e.g., restore power supply. A framework is proposed to evaluate different node replacement strategies, based on a large set of representative disasters.

Data gathering and -assembling from several smart meter han ports

The objective of the master thesis work was to implement an embedded system enabling the real- time data gathering and -assembling from the HAN (home area network) ports of distributed smart meters. The system consists of a tiny embedded system for reading the output of the HAN port and interpreting the data, a 4G connection to a cloud service for data transfer using existing tele- communication infrastructure, and a simple graphical user interface for displaying the voltage as a function of location along the line.

Use cases for smart grid operation

Based on the previously defined topics (in 2017) several Use Cases have been developed in close collaboration with CINELDI partners, presented in a webinar " Introduction to Use Case Methodology", and a joint workshop on the use and misuse cases. One of the use cases "State of the art of applying machine learning on Smart Grid data" about application of machine learning for outage management, has been elaborated and accepted for presentation at the CIRED 2019 conference.

Misuse cases

Misuse cases for communication interoperability, ICT security and privacy (CIIP) were developed, based on a review of existing CIIP use cases, input from the other use cases, and from a workshop with participating experts where the focus was on smart distribution grids and manipulation of communication networks. Two master students completed their thesis on security of smart meters and IoT devices for the electricity grid.

A new concept for protection in distribution systems

The experimental testing of the Hafslund new protection concept, started in 2017, has been extended to cover a broad range and variance of fault situations. This work continues in 2019 to provide an extensive test coverage with laboratory testing, simulations in MATLAB/Simulink, hardware-in-the-loop testing, and finally the goal is to do real-life implementation in a pre-determined part of Hafslund's distribution grid where the physical infrastructure is already in place.

Results 2017

Data gathering and -assembling from several smart meter HAN ports
A student master thesis work is in progress, with the title "Data gathering and - assembling from several smart meter HAN ports." This system will make an efficient system for collecting data from the distributed smart metertxts, transfer them to a cloud service and do a preliminary analysis of the assembled data from the different smart meters.

Survey of sensors
As part of the state of art study of sensors currently in use in today's distribution grid, a survey was developed and circulated to selected partners in CINELDI. The feedback from the survey will be important input to Romina Muka (PhD, starts January 2018) and her research in optimal deployment of sensors and controllers for the operation of the next generation distribution grid (with new intelligent electrical devices).

Co-simulations of power grid and communication network and services
The state of the art of co-simulations of power grid and communication network and services are investigated, and several proposed solutions and open questions are identified. The synchronization between the domain specific simulators, how to make the simulators be integrated in real time is one of the main challenges. The work is conducted by Fredrik Haugli (PhD from September) as part of his research plan to establish a modelling framework (potentially using simulation) to investigate the trade-off between centralised and distributed operation of the distribution grid.

Use cases for the future distribution grid
The work on Use Cases for the future distribution grid started with that the topic of interest was defined and justified by the partners (results from a survey and workshop 2018-06-22). Then, almost 240 Use Cases were reviewed by an expert group and narrowed down to 14 Use Cases which have been proposed for further development.
The work in the Expert Group has been initiated that will continue working of 3-4 selected use cases in 2018. It is on the agenda for a workshop planned for May 2018.

WP2 experiment in the Norwegian Smart Grid Laboratory
WP2 experiment in the Norwegian Smart Grid Laboratory

Security of smart meters and IoT devices for the electricity grid
The main results from this activity is from the work of three master students on security of smart meters and IoT devices for the electricity grid. The master students are doing research on how the smart meter HAN port may be exploited by an attacker, and they are analysing the risks of adding IoT devices that interact with the smart grid within the ISO/IEC 27005 risk management framework.

A new concept for protection has been tested out in the Smart Grid Laboratory
CINELDI's first implementation of a use case in the laboratory: Hafslund Nett has proposed a new method for fault localization of short circuits in mesh-connected distribution networks.

The implementation includes several preparing actions prior to actual testing of the novel concept in a controlled environment at the Smart Grid Laboratory (NTNU Campus). Three visiting representatives from R&D department at Hafslund Nett attended a one-day lab session, taking active part of the initial physical experiments in lab. Part of the concept was confirmed, but the actual calculation of fault location requires further in-depth research to account for non-ideal conditions, e.g. unbalanced network impedance.

Later, much of the work has focused on acquiring a more detailed and accurate characterization of the distribution grid model. Moreover, these data have been used to parametrize a simulation model, enabling parallel workflow of simulation and physical testing on lab. If proven as a viable concept, the use case will be considered to become a pilot project in CINELDI. The present work will be presented in two documents, a technical report related to the technical assessment and documentation of the distribution grid model. The second document will describe in-depth the Hafslund use case, along with generated research results and further recommendations.


Henning Taxt

WP2 Lead
+ 47 977 53 048
Henning Taxt
WP2 Lead