mgval_0.45
Here you find instance definitions and the best known upper and lower bounds (to our knowledge) for the 34 instances of the mgval (ß=0.45) benchmark derived from the CARP by Bosco et al. [BLMV]. The values for the upper and lower bounds reported in the table only include traversal costs, i.e. service costs are omitted.

Instance definitions (text)

The mgval_0.45 instance definitions can be found, as a zip-file here.

 

Best known results for the mgval_0.45 benchmark

For the Upper Bound values in blue, you get the detailed solution by clicking on the value.

InstanceUpper Bound ReferenceLower BoundReferenceGAP(%)
mgval_0.45_1A* 168 BLMV 168 BLMV 0
mgval_0.45_2A* 251 BLMV 251 BLMV 0
mgval_0.45_3A* 82 BLMV 82 BLMV 0
mgval_0.45_4A* 381 BLMV 381 BLMV 0
mgval_0.45_5A 391 BLMV 380 BLMV 2.87
mgval_0.45_6A* 213 BLMV 213 BLMV 0
mgval_0.45_7A* 261 BLMV 261 BLMV 0
mgval_0.45_8A 370 BLMV 368 BLMV 0.6
mgval_0.45_9A 306 BLMV 300 BLMV 2.11
mgval_0.45_10A 388 BLMV 385 BLMV 0.68
mgval_0.45_1B* 166 BLMV 166 BLMV 0
mgval_0.45_2B* 314 BLMV 314 BLMV 0
mgval_0.45_3B* 91 BLMV 91 BLMV 0
mgval_0.45_4B 471 BLMV 448 BLMV 5.12
mgval_0.45_5B 416 BLMV 394 BLMV 5.61
mgval_0.45_6B* 210 BLMV 210 BLMV 0
mgval_0.45_7B 294 BLMV 290 BLMV 1.28
mgval_0.45_8B 360 BLMV 344 BLMV 4.68
mgval_0.45_9B 323 BLMV 313 BLMV 3.36
mgval_0.45_10B 399 BLMV 390 BLMV 2.26
mgval_0.45_1C 258 DDHI       
mgval_0.45_2C 462 DDHI      
mgval_0.45_3C 143 BLMV 142 G 0.70
mgval_0.45_4C 480 DDHI 441 BLMV  8.84
mgval_0.45_5C 492 BLMV 446 BLMV  7.84
mgval_0.45_6C 296 DDHI      
mgval_0.45_7C 336 DDHI       
mgval_0.45_8C 498 DDHI       
mgval_0.45_9C  291 BLMV  275 BLMV  5.88
mgval_0.45_10C  403 BLMV  390 BLMV  3.83
mgval_0.45_4D  577 DDHI       
mgval_0.45_5D  552 DDHI      
mgval_0.45_9D 387 DDHI      
mgval_0.45_10D 487 DDHI      
 

References

BLMVA. Bosco, D. Lagana, R. Musmanno, and F. Vocaturo. Modeling and solving the mixed capacitated general routing problem. Optimization Letters (2012), pp 1-19, doi 10.1007/s11590-012-0552-y.

DDHI - M. Dell'Amico, J. C. Díaz Díaz, G. Hasle, M. Iori. An Adaptive Iterated Local Search for the Mixed Capacitated General Routing Problem. SINTEF Report A26278. 2014-05-16. ISBN 978-82-14-05361-6.

G - K. A. Gaze, G. Hasle, C. Mannino. Column Generation for the Mixed Capacitated General Routing Problem. Talk at WARP 1 - First Workshop on Arc Routing Problems, Copenhagen May 22-24 2013.

Published June 22, 2012