

SINTEF ICT
Applied Mathematics
2014-05-16

 A26278- Unrestricted

Report

An Adaptive Iterated Local Search for
the Mixed Capacitated General Routing
Problem

Working paper

Author(s)
Mauro Dell'Amico, University of Modena and Reggio Emilia
Geir Hasle, SINTEF
José Carlos Díaz Díaz, University of Modena and Reggio Emilia
Manuel Iori, University of Modena and Reggio Emilia

SINTEF IKT
SINTEF ICT

Address:
Postboks 124 Blindern
NO-0314 Oslo
NORWAY

Telephone:+47
Telefax:+47 22067350

Enterprise /VAT No:

Report

An Adaptive Iterated Local Search for
the Mixed Capacitated General Routing
Problem

KEYWORDS:
Vehicle Routing;
Arc Routing;
Mixed Capacitated
General Routing
Problem;
Node, Edge, and Arc
Routing Problem;
Metaheuristics

VERSION

1
DATE

2014-05-16

AUTHOR(S)

Mauro Dell'Amico, University of Modena and Reggio Emilia
Geir Hasle, SINTEF
José Carlos Díaz Díaz, University of Modena and Reggio Emilia
Manuel Iori, University of Modena and Reggio Emilia

CLIENT(S)

Norges forskningsråd / eVita
CLIENT’S REF.

205298

PROJECT NO.

102002202
NUMBER OF PAGES/APPENDICES:

32 / 1

ABSTRACT

We study the Mixed Capacitated General Routing Problem (MCGRP) in which a fleet of
capacitated vehicles has to serve a set of requests by traversing a mixed weighted graph.
The requests may be located on nodes, edges, and arcs. The problem has theoretical
interest because it is a generalization of the Capacitated Vehicle Routing Problem (CVRP),
the Capacitated Arc Routing Problem (CARP), and the General Routing Problem (GRP). It is
also of great practical interest since it is often a more accurate model for real world cases
than its widely studied specializations, particularly for so-called street routing applications.
Examples are urban-waste collection, snow removal, and newspaper delivery. We propose
a new Iterated Local Search metaheuristic for the problem that also includes vital
mechanisms from Adaptive Large Neighborhood Search combined with further
intensification through local search. The method utilizes selected, tailored, and novel local
search and large neighborhood search operators, as well as a new local search strategy.
Computational experiments show that the proposed metaheuristic is highly effective on
five published benchmarks for the MCGRP. The metaheuristic yields excellent results also
on seven standard CARP datasets, and good results on four well-known CVRP benchmarks.

PREPARED BY

Geir Hasle
SIGNATURE

CHECKED BY

Tomas Eric Nordlander
SIGNATURE

APPROVED BY

Trond Runar Hagen
SIGNATURE

REPORT NO.
A26278

ISBN
.978-82-14-05361-6

CLASSIFICATION

Unrestricted
CLASSIFICATION THIS PAGE

Unrestricted

PROJECT NO.
102002202

REPORT NO.
A26278

VERSION
1

Document history
VERSION DATE VERSION DESCRIPTION

1 2014-05-16 First revision of manuscript submitted 2013-06-25.

An Adaptive Iterated Local Search for

the Mixed Capacitated General Routing Problem

Mauro Dell’Amico(1), José Carlos Dı́az Dı́az(1), Geir Hasle(2), Manuel Iori(1)

(1) Department of Science and Methods for Engineering,

University of Modena and Reggio Emilia,

Via Amendola 2, 42122 Reggio Emilia, Italy

{mauro.dellamico; jose.diaz; manuel.iori}@unimore.it

(2) Department of Applied Mathematics,

SINTEF ICT

P.O. Box 124 Blindern, NO-0314 Oslo, Norway

Geir.Hasle@sintef.no

Abstract

We study the Mixed Capacitated General Routing Problem (MCGRP) in which a fleet of capacitated

vehicles has to serve a set of requests by traversing a mixed weighted graph. The requests may be

located on nodes, edges, and arcs. The problem has theoretical interest because it is a generalization of

the Capacitated Vehicle Routing Problem (CVRP), the Capacitated Arc Routing Problem (CARP), and

the General Routing Problem (GRP). It is also of great practical interest since it is often a more accurate

model for real world cases than its widely studied specializations, particularly for so-called street routing

applications. Examples are urban-waste collection, snow removal, and newspaper delivery. We propose

a new Iterated Local Search metaheuristic for the problem that also includes vital mechanisms from

Adaptive Large Neighborhood Search combined with further intensification through local search. The

method utilizes selected, tailored, and novel local search and large neighborhood search operators, as

well as a new local search strategy. Computational experiments show that the proposed metaheuristic is

1

highly effective on five published benchmarks for the MCGRP. The metaheuristic yields excellent results

also on seven standard CARP datasets, and good results on four well-known CVRP benchmarks.

Keywords: Vehicle Routing; Arc Routing; Mixed Capacitated General Routing Problem; Node, Edge, and Arc

Routing Problem; Metaheuristics

Introduction

Two of the most important optimization problems in freight transportation and logistics are the Capacitated

Vehicle Routing Problem (CVRP) and the Capacitated Arc Routing Problem (CARP).

In the CVRP, a set of customers with known demands must be served by a fleet of identical capacitated

vehicles stationed at a central depot. Requests with given demand size are located on the vertices of a

graph, and the aim is to route the vehicles along the graph to satisfy all requests with minimum routing

cost, obeying vehicle capacity. The graph may be either directed or undirected, and the costs are assigned

to links (edges/arcs). The problem has been widely studied (especially in its undirected version) because of

the large number of real-world applications it models, including distribution of gasoline, beverage, and food,

and collection of solid waste. We refer the interested reader to the books by Toth and Vigo (2002a) and

Golden et al. (2008).

In the CARP we are still given a weighted undirected/directed graph, but in this case, requests of given

size are located on a subset of links. A fleet of identical vehicles, all based at a central depot and having

a fixed capacity, is available for serving the requests. The problem is to route vehicles along the graph in

a capacity feasible way to serve all requests with minimum routing cost. Also the CARP has been widely

studied, because it captures the essence of a wide range of real-world applications, including street sweeping,

winter gritting, and snow clearing. In many cases the CARP is also a good model for postal delivery,

newspaper delivery, and household waste collection. We refer the interested reader to the survey by Wøhlk

(2008) and the annotated bibliography by Corberán and Prins (2010).

In the literature, there has been a tendency to categorize applications as being either a case of node

routing, or a case of arc routing. There are, however, important real-world problems whose essential char-

acteristics cannot be captured neither by the CVRP nor by the CARP, as there is a mixture of requests

located on nodes and requests located on links. Prins and Bouchenoua (2005) argue that in certain cases

2

of urban-waste collection, most requests may be adequately modeled as located on streets, but some large

point-based demands, located for example at schools or hospitals, are better modeled by the use of vertices.

In subscription newspaper delivery, requests are basically located in points, but in dense urban or suburban

residential areas a CARP model based on the street network may be a good abstraction. In general, qualified

abstraction and problem reduction for a CVRP instance through aggregation, for instance with heuristics

based on the road network, will create an instance with requests located on nodes, edges, and arcs, see, e.g.,

Hasle et al. (2012).

To answer the challenges that are induced by these complex problems, several researchers have recently

focused their attention on the so-called Mixed Capacitated General Routing Problem (MCGRP). In the

MCGRP, requests are located on a subset of vertices, edges, and arcs of a given weighted mixed graph, and a

fleet of identical capacitated vehicles based at a central depot is used to satisfy requests with minimum routing

cost while adhering to capacity constraints. The MCGRP is able to model a continuum of mixed node and

arc routing problems, and hence removes the sharp boundary that is often seen in the literature. As alluded

to above, the problem has large practical interest, particularly for so-called street routing applications, see

Bodin et al. (2003). The MCGRP is also of interest in combinatorial optimization, because it generalizes

both the CVRP, the CARP and many other routing problems, as described in Section 2. Its resulting

combinatorial complexity is, however, very high, and solving it to optimality is a difficult task even for

moderate-size instances, see Bach et al. (2013) and Bosco et al. (2013).

In this paper, we propose a novel, hybrid metaheuristic, called Adaptive Iterated Local Search (AILS)

for easy reference, to solve large-size instances of the MCGRP. It utilizes vital mechanisms from two classical

trajectory-based metaheuristics: Iterated Local Search (ILS), see Lourenço et al. (2010), and Adaptive Large

Neighborhood Search (ALNS), see Pisinger and Røpke (2007). We have combined these mechanisms in a

new way, and introduced several new elements. Novel local search and large neighborhood search operators

have been designed, and well-known operators have been tailored to the problem at hand. When ALNS

finds solutions with a certain quality, they are further intensified by local search (LS). We have designed

a new, aggressive LS strategy. In each iteration we explore the union of neighborhoods resulting from five

operators, and try to execute all moves with positive savings. In effect, we execute all independent moves

before generating a new neighborhood.

Our experimental study shows that the resulting algorithm is highly effective. For five MCGRP bench-

3

marks consisting of 409 instances in total, AILS produces 402 best known solutions, 128 of which are new.

180 of the 402 solutions are proven optimal. One instance was closed for the first time by AILS. Notably, the

AILS also achieves high quality computational results for heavily investigated special cases of the MCGRP,

viz. four standard benchmarks for the CVRP, and seven standard benchmarks for the CARP.

The remainder of the paper is organized as follows. In Section 1 we formally describe the MCGRP. In

Section 2 we give a survey of the most relevant results in the related literature. In Section 3 we propose our

AILS metaheuristic for the MCGRP, and describe the key elements that make it computationally effective.

In Section 4 we evaluate the algorithm by means of extensive computational tests, and in Section 5 we draw

conclusions.

1 Problem Description

The MCGRP is defined on a weighted mixed graph G = (N,E,A), where N = {1, 2, . . . , n} is the set of

nodes, E the set of edges and A the set of arcs. Let cij denote the non-negative traversal cost associated with

any link (i, j) ∈ E ∪ A. The traversal cost, also known as deadheading cost, denotes the cost for traversing

the link without servicing it. The traversal cost is 0 for all nodes.

Three subsets Nr ⊆ N , Er ⊆ E and Ar ⊆ A define the requests, or tasks, i.e., the subsets of, respectively,

nodes, edges, and arcs that have demand and must be serviced. Each request has a non-negative service cost,

si for i ∈ Nr and sij for (i, j) ∈ Er∪Ar, and a non-negative demand, qi for i ∈ Nr and qij for (i, j) ∈ Er∪Ar.

Let τ = |Nr|+ |Er|+ |Ar| be the total number of requests.

An unlimited fleet of identical vehicles, all having capacity Q, is used to service the requests. The fleet

is located in a special node, called the depot. Each vehicle performs at most one route, that is, it starts from

the depot, services a number of requests, and then returns to the depot. Deadheading via non-required links

is usually necessary to reach the required ones. A route is feasible if the sum of serviced demands does not

exceed the vehicle capacity.

The aim of the MCGRP is to define a set x of feasible routes for which every request, i ∈ Nr and

(i, j) ∈ Er ∪ Ar, is serviced exactly once, and the total cost z(x) is a minimum. Note that the total service

cost is constant over all feasible solutions, hence it is sufficient to minimize the sum of traversal costs.

An example of a MCGRP instance is given in Figure 1. Each node is depicted by a circle, drawn with

4

a solid line if the node is a request, by a dashed line otherwise. Node 7 is the depot and is depicted by

a square. Similarly, required links are drawn with a solid line, non-required links with a dashed line. The

traversal costs are indicated. In this particular instance the traversal costs are symmetric, hence we give

only one cost for each pair of arcs connecting the same two vertices. The vehicle capacity is 1437.

1 2 3 4

5 6 7

8
9 10

11

c = 19

c
=

2
5

c
=
29

c = 22c = 20 c = 38

c
=

3
9c = 20

c
=

1
8

c
=

3
2

c = 20

c
=

1
8

c
=

1
8

c
=

1
8

c
=
27

c = 19 c = 22c = 27 c = 36

Figure 1: A MCGRP example: Instance CBMix23.

A solution for the instance in Figure 1 is illustrated in Figure 2. It consists of four routes, each presented

in a separate sub-figure for the sake of clarity. In each sub-figure, the links with solid lines are serviced by

the route, links with dashed lines indicate deadheading. We also indicate the demand for each serviced task.

Note that Route 1 starts from the depot and visits, in sequence, nodes 10, 6, 5, and 8, then visits 6 again

and returns to the depot. It services five tasks, namely 10, (10,6), (5,8), (8,6) and (6,7), with total demand

(denoted load for short in the figure) equal to 1024. Note also that Route 2 travels three times through node

6, and Route 3 is forced to travel three times between nodes 4 and 11 to perform the two requests (4,11)

and (11,4). The resulting solution value is 780, and its optimality was proven by Bosco et al. (2013).

2 Prior Work in the Area

The MCGRP has also been called the Node, Edge, and Arc Routing Problem (NEARP) in the literature. As

far as we know, Pandi and Muralidharan (1995) is the first paper that investigates the MCGRP. The authors

studied a generalization with a heterogeneous fixed fleet, and a maximum route duration constraint. The

resulting problem, denoted the Capacitated General Routing Problem (CGRP), was solved with a route-first-

cluster-second heuristic. The algorithm was tested on random test instances inspired from curb-side waste

collection in residential areas, and on random instances from the Capacitated Chinese Postman Problem

5

1 2 3 4

5 6 7

8
9 10

11

5 6 7

8
10

q = 156

q
=
30
3

q
=

1
3
0 q

=
320

q = 115

(a) Route 1 (cost = 130, load = 1024)

1 2 3 4

5 6 7

8
9 10

11

1 2

5 6 7

9 10

q = 131

q
=

2
8
7 q

=
28
3

q
=

1
2

q
=

2
6

q = 244

(b) Route 2 (cost = 192, load = 983)

1 2 3 4

5 6 7

8
9 10

11

3 4
q = 397

7

10
11

q
=

2
7
4

q
=

1
3
9

q
=

3
5
1

(c) Route 3 (cost = 227, load = 1161)

1 2 3 4

5 6 7

8
9 10

11

1 2 3
q = 302

4

6 7

10
11

q = 215

q
=

2
2
7

q = 321 q = 363

(d) Route 4 (cost = 231, load = 1428)

Figure 2: A four-route (optimal) solution for CBMix23.

literature.

A few years later, Gutiérrez et al. (2002) studied the homogeneous fixed fleet version of the CGRP, and

called it the Capacitated General Routing Problem on Mixed Graphs (CGRP-m). In other words, the CGRP-

m is a MCGRP with a limited number of vehicles. They proposed an O(n3) heuristic and compared it with

the heuristic by Pandi and Muralidharan (1995), obtaining favorable computational results on a benchmark

of 28 instances with the number of vehicles between 2 and 4, and the number of required tasks between 6

and 21.

Prins and Bouchenoua (2005) introduced the Node, Edge, and Arc Routing Problem (NEARP) name for

the problem and solved it by means of a memetic algorithm in which a population of solutions is evolved

through a genetic process, and each new solution is post-optimized using five local search operators. The

resulting algorithm was tested on benchmark instances from the CVRP and CARP literature, and on a new

set of MCGRP instances denoted the CBMix benchmark. Kokubugata et al. (2007) developed a simulated

6

annealing algorithm that makes use of three local search operators. They tested their algorithm on the

CBMix instances and provided several new best known solutions. Recently, upper bounding procedures were

discussed by Hasle et al. (2012), who obtained interesting computational results by running the commercial

VRP solver Spider.

The first lower bounding procedure for the MCGRP was proposed by Bach et al. (2013). It was obtained

by adapting a procedure originally developed for the CARP by Wøhlk (2006), based on the solution of a

matching problem. The lower bound was tested on the CBMix benchmark, and on two new sets of MCGRP

instances: the BHW benchmark based on well known instances from the CARP literature, and the DI-NEARP

benchmark taken from real-world newspaper distribution cases in Norway.

Bosco et al. (2013) proposed the first integer programming formulation for the MCGRP, using three-

index variables for nodes and two-index variables for edges and arcs. They extended some valid inequalities

originally introduced for the CARP to the MCGRP, and embedded them into a branch-and-cut algorithm.

This algorithm was tested on two new benchmarks called mggdb and mgval, each consisting of six sets,

and totalling 342 instances. The mggdb benchmark was derived from the gdb undirected CARP instances.

The mval mixed CARP dataset is the origin of the mgval benchmark. The authors considered only the

instances involving at most seven vehicles in their experiments. They also tested their algorithm on the four

smallest-size CBMix instances, providing two optimal solutions.

As mentioned in the introduction, the MCGRP generalizes a large number of optimization problems

arising in transportation and logistics. A problem classification is presented in Figure 3. The classification

is incomplete, because of the large number of variants addressed in the scientific literature. As depicted by

the figure, the MCGRP directly generalizes:

• the Capacitated Vehicle Routing Problem (CVRP): Nr = N , Er = ∅ and A = ∅;

• the Capacitated Arc Routing Problem (CARP): Nr = ∅ and A = ∅; and

• the General Routing Problem (GRP): one vehicle, Q = +∞ and A = ∅.

The CVRP is one of the most widely studied problems in the combinatorial optimization literature.

Recently, exact algorithms based on branch-and-cut-and-price techniques have been proposed by Baldacci

et al. (2008) and Baldacci and Mingozzi (2009). Good-quality heuristic solutions have been obtained in

the last years by, among others, Gröer et al. (2011) with local search and integer programming embedded

7

into a parallel algorithm, and Vidal et al. (2012) with a hybrid genetic algorithm that can also take into

consideration multiple depots or multiple periods. We also mention that there are works aimed at solving

the CVRP on an asymmetric cost matrix. The literature on the problem, known as the Asymmetric CVRP

(ACVRP), is described, e.g., in Toth and Vigo (2002b). Note that, since the CVRP is strongly NP -hard,

so is the MCGRP.

The CARP has also been widely studied in the literature. Recently, branch-and-cut-and-price algorithms

have been presented by Bartolini et al. (2011) and Martinelli et al. (2011). Good-quality heuristic solutions

have been obtained via Ant Colony Optimization by Santos et al. (2010). Despite the use of the term “arc”

in its name, the CARP has been originally defined on an undirected graph. Works aimed at solving arc

routing problems on directed graphs, and on more general mixed graphs, are described, e.g., in Corberán

et al. (2006).

The GRP was introduced by Orloff (1974), to model the problem of collecting requests on nodes and edges

of an undirected graph with a single uncapacitated vehicle. A good cutting plane algorithm was proposed by

Corberán et al. (2001). Similar to the CVRP and the CARP, also the GRP has been extended to directed

and mixed graphs, see, e.g., Corberán et al. (2005). Notably the GRP generalizes other combinatorial

optimization problems, namely:

• the Rural Postman Problem (RPP): one uncapacitated vehicle, A = ∅, Nr = ∅;

• the Chinese Postman Problem (CPP): one uncapacitated vehicle, A = ∅, Nr = ∅, Er = E;

• the Steiner Graphical Travelling Salesman Problem (SGTSP): one uncapacitated vehicle, A = ∅, Er =

∅;

• the Graphical Travelling Salesman Problem (GTSP): one uncapacitated vehicle, A = ∅, Er = ∅,
Nr = N ; and

• the Travelling Salesman Problem (TSP): one uncapacitated vehicle, A = ∅, Er = ∅, Nr = N .

For the literature on the RPP, CPP, SGTSP, GTSP, TSP and their extensions to directed and mixed graphs,

we refer the reader to Corberán et al. (2001), Gutin and Punnen (eds.) (2002), Corberán et al. (2007) and

references therein.

8

k vehicles

1 vehicle

nodes edges/arcs

MCGRP

CVRP CARP

GRP
SGTSP

GTSP

TSP

RPP

CPP

Figure 3: A graphical representation of a problem classification.

3 Adaptive Iterative Local Search

In this section we discuss the novel hybrid metaheuristic that we propose to search for high-quality solutions

of MCGRP instances of realistic size in reasonable time. For easy reference, we call the algorithm Adaptive

Iterative Local Search (AILS). Parts of AILS uses pseudo-random numbers, but we emphasize that it is a

deterministic algorithm that will produce the same path in the search space given the same random seed.

First, we give a description of the overall design of AILS. Main goals are to ensure a good balance

between intensification and diversification, and to avoid non-productive search efforts. To this end, we use

the idea of Iterated Local Search (ILS) (see, e.g., Lourenço et al. (2010)) that mainly consists of improving

a solution through a trajectory based intensification algorithm, and diversification through a perturbation

method when intensification stagnates.

AILS combines intensification mechanisms that on their own have proven to be highly effective for a

variety of discrete optimization problems, including many variants of the VRP, namely Adaptive Large

Neighborhood Search (ALNS) proposed by Pisinger and Røpke (2007) and partially based on ideas from

Shaw (1997), and deep intensification through Local Search (LS). Intensification is performed in stages, each

consisting of a certain number of iterations.

In one iteration, ALNS destroys and repairs the current solution. The pair of destructor and constructor

operators is probabilistically selected among alternative operators. A reinforcement learning technique is

9

used to update the selection probabilities. Further details on our version of the ALNS are given in Section 3.2.

It contains several innovations and non-standard mechanisms. If the solution resulting from a destroy/repair

operation has good quality, it is further intensified through local search with five local search operators, and

a new, aggressive move selection strategy. Details are given in Section 3.3

The main diversification mechanism of AILS is a major disruption – a “kick” – applied when a certain

number of iterations have passed without acceptance of a new solution. The kick utilizes the random

destructor and random constructor operators from the ALNS, see Section 3.2. It is followed by intensification

through local search.

3.1 Structure of AILS

The overall structure of AILS, which is quite simple, is given in Algorithm 1. AILS find a first feasible

solution with simple, fast heuristics, as described in Section 3.5. The initial solution is taken to a deep

local optimum through an aggressive local search procedure. A main repeat-until loop performs Iterated

Local Search until timeout. An intensification stage, implemented by the inner for loop, performs several

iterations of ALNS and (possibly) subsequent local search is performed, and a local incumbent for the stage

is maintained. When a stage is finished, a new one is started from the local incumbent of the previous one.

A kick is performed whenever a stagnation occurs, i.e., no new solution has been accepted for a certain

number of iterations. The resulting solution is taken to a local optimum before a new intensification stage

is started.

Given the overall design of AILS, we developed alternatives for the most important mechanisms. To select

among alternatives, and to assess the contribution of algorithmic components, we performed comparative

experiments on a selected subset of MCGRP instances, as described in 3.4. A detailed documentation of the

final version of the algorithm is given in Algorithms 2 and 3.

10

Algorithm 1 Overall structure of Adaptive Iterative Local Search

1: function AILS(Instance)
2: xincumbent :=Construct Initial Solution(Instance)
3: comment: Take the initial solution to a local optimum
4: xLocalIncumbent := xincumbent :=LS(xincumbent)
5: comment: ILS iterative phase: repeats for several stages until a timeout occurs
6: repeat
7: xcurrent := xBestThisStage := xLocalIncumbent

8: comment: Execute a stage of intensifying iterations until no improvement, then kick
9: for i := 1 to IterPerStage do

10: if not Stagnation then
11: comment: Reset roulette probabilities regularly and build new tentative solution
12: if ResetCriterion then Reset Roulette Probabilities()
13: comment: Destroy and Repair with randomly selected Destructor and Constructor pair
14: xcurrent :=Roulette Destroy and Repair(xcurrent)
15: comment: Intensify further with local search only if solution is below quality threshold
16: if not QualityBelowThreshold(xcurrent) then continue
17: comment: Cost not too far from the best solution of the stage, intensify with LS
18: xcurrent := LS(xcurrent)
19: comment: Check if new solution should be accepted
20: if not Acceptable(xcurrent) then continue
21: if z(xcurrent) < z(xBestThisStage) then Update Best and Incumbents(xcurrent)
22: if NewBest then break
23: else
24: comment: No progress for many iterations, make a major disruption
25: xLocalIncumbent :=Random Destroy and Repair(xLocalIncumbent)
26: xcurrent := xLocalIncumbent :=LS(xLocalIncumbent)
27: if z(xcurrent) < z(xBestThisStage) then Update Best and Incumbents(xcurrent)
28: break
29: end if
30: end for
31: until Timeout()
32: return xincumbent

33: end function

As will become evident in Section 4 below, AILS is competitive not only for MCGRP, but also for the

CARP and CVRP special cases. In our view, the good, robust performance of AILS is due to:

- a careful choice of the best-performing LS and ALNS operators from the literature;

- an adaptation of high-performing operators to the MCGRP model;

- the introduction of a novel type of Destructor that utilizes the structure of the instance;

- a new combination of metaheuristic mechanisms that balances intensification and diversification, and

11

reduces futile search efforts;

- an aggressive LS strategy that fully utilizes information on promising moves

- a selection of main algorithmic components based on empirical investigation.

3.2 The Adaptive Large Neighborhood Search Component

To perform well, ALNS must utilize a varied repertoire of destructor and constructor operators, and a

qualified mechanism for selecting the operators to employ in a given cycle. Our ALNS design introduces a

novel tree-destructor that utilizes the graph structure of the instance at hand. Experiments (see Section 3.4)

shows that the proposed tree-destructor is effective.

Self-adaptation in ALNS is typically achieved through a reinforcement learning mechanism that rewards

operators that have been successful in past iterations. The Adaptive Large Neighborhood Search mechanism

in AILS is a simplified version of the one proposed by Pisinger and Røpke (2007). An important difference is

that the reinforcement learning mechanism is based on operator pairs rather than on single operators. Any

time the destroy and repair mechanism is invoked, a destructor/constructor operator pair is randomly drawn,

using roulette wheel selection. These operators are then used to remove and re-insert a randomly drawn

number of tasks k in the interval [1, kmax] in the current solution. A scores matrix π contains a measure

for the effectiveness of each pair of Destructor and Constructor operators. It is used by the roulette wheel

selection procedure. The score element πij is associated with the i-th Destructor and the j-th Constructor.

The initial value for all elements is 1. The update procedure increments the value πij by 1 unit, whenever

the i-th Destructor and the j−th Constructor have lead to a new current solution.

Another novel feature of our ALNS concerns the resetting of scores at regular intervals. Through experi-

ments (see Section 3.4 for details) we observed that resetting deteriorated the performance of AILS for large

size instances. For such instances, a small number of stages are performed. Thus, resetting will take place

prematurely, and the learning effect will suffer. Hence, we introduced a problem size value beyond which we

do not invoke resetting of ALNS operator scores.

For the AILS, we designed a repertoire of seven destructor operators, all parameterized by the number

of tasks to remove:

1. Random-Destructor: k random tasks are selected and removed from the solution;

12

2. Task-Destructors: these are our extensions of the analogous operators used for CVRP and CARP.

2.a Node-Destructor: if k ≤ |Nr|, k random node tasks are removed from the solution, otherwise

the Random-Destructor is used;

2.b Edge-Destructor: if k ≤ |Er|, k random edge tasks are removed from the solution, otherwise

the Random-Destructor is used;

2.c Arc-Destructor: if k ≤ |Ar|, k random arc tasks are removed from the solution, otherwise the

Random-Destructor is used;

3. Worst-Destructor: we define the cost of removing a task t from the current solution x as Γ(t, x) =

z(x) − z−t(x), where z−t(x) is the cost of the solution without task t. The operator removes the k

tasks having the highest values of Γ(t, x);

4. Related-Destructor: this operator was proposed by Shaw (1997, 1998). Its aim is to remove tasks

that are somehow close one to one another. For the MCGRP, extending the original idea, we define

the contiguity of two tasks r and t as:

ρ(r, t) = β
c′rt

maxsu c′su
+ γ

|q(r) − q(t)|
maxs q(s)

+ δ(r, t), (1)

where β = 0.75, γ = 0.1 as recommended in the literature, c′rt is the minimum traversal cost between

r and t, q(t) is the demand of task t, and δ(r, t) takes value 1 if r and t are in the same route in the

current solution, 0 otherwise.

5. Tree-Destructor: this is a new operator which is particularly effective for MCGRPs where the tasks

are not all of the same kind (Node, Edge or Arc). It first randomly selects a root node, and then grows

a tree from this root by using a breadth-first strategy. The growth is halted as soon as k tasks (of any

kind) are encountered.

Three constructors were designed for AILS, as extensions of operators from the literature. They re-insert

k removed tasks in the current solution, one at a time, according to a certain criterion. They iterate until

all tasks have been re-inserted. The resulting solution is always feasible, although it may contain additional

routes.

13

• Random-Constructor: Insert each task, one at a time, according to the order in which they have

been removed from the solution by the Destructor, in a random position in the current set of routes.

If no feasible position exists, Create a new route with only this task;

• Greedy-Constructor: In each iteration, the task with the minimal best insertion cost is inserted in

its best position;

• Regret-Constructor: Compute for each task t its cheapest insertion cost, and its second cheapest

insertion cost, and define its regret r(t) as the difference between the two costs. Insert the task having

maximum regret in its best position, and then re-iterate, by re-computing regrets, until all tasks have

been re-inserted.

The Regret-Constructor has been used, among others, by Ropke and Pisinger (2006), to overcome the myopic

behavior of greedy repair.

3.3 The Local Search Component

Local search in AILS is based on five operators from the node routing and arc routing literature that will

be described in detail below. These operators have been extended to accommodate the MCGRP model. In

total, 26 move subtypes have been implemented. However, we have designed a new (as far as we know),

more aggressive neighborhood evaluation strategy, as follows. In each iteration, the union of neighborhoods

resulting from the operators applied to the current solution is fully explored. All moves with positive savings

are considered, in the order of decreasing savings. All independent moves that lead to feasible solutions

are executed, before local search proceeds with the next neighborhood exploration from the new current

solution.

As is seen from Algorithm 1, AILS performs intensification through local search in three situations:

• after construction of the initial solution

• when a solution with sufficient quality has been produced by ALNS

• after a kick

The different situations call for different LS variants. After initial construction, the goal is to find a high

quality solution fast, a deep local optimum. Therefore, we utilize the most powerful local search variant

14

called LS Full that includes all move types. In the two other situations, we have seen through experiments

that LS Full becomes too expensive. We therefore designed two reduced variants: LS1 and LS2. The

details of these are given below. For further intensification of a deserving solution after a destroy and repair,

we randomly select between LS1 and LS2, with a 70% probability for LS1. After a kick, LS1 is employed.

These choices were made after extensive experiments on standard MCGRP, CARP, and CVRP benchmarks.

For acceptance of the new solution, we decided to investigate two criteria:

• simple improvement

• a deterministic annealing variant called Threshold Accepting (TA) Dueck and Scheuer (1990)

TA is known to be as effective and more computationally efficient than Simulated Annealing. For the final

selection of acceptance criterion, we refer to Section 3.4.

AILS utilizes the following set of local search operators:

• Swap: exchange the position of two tasks (both intra- and inter-route);

• Or-opt: break a route in three points, then reconnect it in the only possible way. The length of the

segment to be relocated is limited to l tasks. Also in this case intra and inter-route optimization are

performed;

• 2-opt: break a route in two points and re-connect the two parts obtained in the only possible way. We

adapted to the MCGRP also the eight different operators originally proposed by Santos et al. (2010)

for the CARP. They consist in the intra-route operator just described, plus seven inter-route operators

obtained by breaking two different routes in one point each, and reconnecting them in all possible ways

when segment reversals are also considered;

• 3-opt: break the route in three points and then reconnect it by also allowing reversing portions of

the route. Suppose the current route is made by three portions A, B and C, 3-opt considers seven

combinations by reversing one or more portions. Namely, ACB̄, AC̄B, AC̄B̄, ĀCB, ĀCB̄, ĀC̄B and

ĀC̄B̄, where X̄ denotes the reversing of X . There are six cases for intra-route (case AC̄B̄ is equal to

2-opt intra-route) and seven cases for inter-route optimization.

• Flip: tries to revert the direction of the visit of an arc or edge task for each modified route.

15

The Flip is commonly used in genetic algorithms and has been applied to MCGRP by Prins (2009).

Hence, AILS uses a total of 26 move subtypes: 13 types of 3-opt, 8 types of 2-opt, 2 types of Or-opt, 2

Swap types, and Flip. LS Full employs all operators above. The segment length limit l for Or-opt is 3,

and for 3-opt, |B| ≤ 3. The computationally cheaper LS1 consists of the following operators: Or-opt with

l = 2, Swap, 3-opt with |B| ≤ 3. This limits the search to 14 operator subtypes. Analogously, LS2 is a

different reduced LS that consists of Or-opt with l = 2, Swap, 2-opt, 3-opt with |B| ≤ 2. It corresponds to

16 operator subtypes. The flip operator is used in LS Full and LS1.

3.4 Configuration of the Algorithm

The final choice of alternative mechanisms and parameter settings in AILS was based on a combination

of hypotheses and insights from experimental investigation. First, experiments with all proposed AILS

mechanisms in place were performed using three MCGRP benchmarks, namely, CBMix, BHW, and DI-NEARP.

Numerical parameters were tuned by running experiments on all these instances. We have observed

that the behavior of AILS mainly depends on the mechanisms introduced, rather than on the values of the

numerical parameters. Moreover AILS is robust against small changes of parameters. The settings used are

as follows: Initial temperature for Threshold Accepting T0 = 0.1, final temperature Tf = 0.001, temperature

reduction factor α = 0.95. The difference between the cost of the initial solution and the incumbent one, is

used as a scaling parameter for Threshold Accepting to make the acceptance criterion instance independent.

The number of destroy and repair cycles per temperature was set to 10, and the number of iterations with no

improvement before invocation of the kick was set to 20.000. Destructor/constructor scores were reset after

500 iterations. The best range for quasi-random selection of number of tasks using a uniform distribution was

determined to be [1,min{20, τ}], where τ is the number of tasks. The value 1 was selected for incrementing

the scores matrix for a successful destructor/constructor pair. These setting are summarized in Table 3.

To empirically assess the merit of proposed components in AILS, we selected a subset of 17 instances

from the CBMix, BHW, and DI-NEARP benchmarks (see Section 2). The sample contains instances of different

size. In general, the sample represents instances that seemed hard from early experiments. The concrete

instances are found in Tables 1 and 2 below.

16

3.4.1 Investigation of ALNS Destructors

An early AILS version only had extensions of classical ALNS destructors. Experiments and analyses revealed

that these destructors do not work well on MCGRP instances with a strong graph structure, as the selected

tasks will be spread all over the graph. This was the motivation for introducing the Tree-Destructor that

utilizes the graph structure to select the tasks to be removed. By logging the scores matrix in initial

experiments, it became apparent, as expected, that the Tree-Destructor after some iterations received higher

scores than any of the three Task-Destructors that pick tasks of a certain kind randomly. We decided

to conduct a comparative experiment where an AILS version with only the extended classical destructors

(Random-Destructor, the three Task-Destructors, the Worst-Destructor, and the Related-Destructor) was

compared to a version including the Tree-Destructor but excluding the Task-Destructors. The choice of

excluding the Task-Destructors is also motivated by the fact that each of them can be applied only if the

number of tasks to be removed is smaller than the cardinality of the task set addressed by the operator. On

the other hand, the use of a combination of the three operators, to manage larger values of k, is equivalent

to apply the Random Destructor.

Each run was given a time limit of 3600 CPU seconds (details on the computer and the implementation

can be found in Section 4). The results are given in Table 1. The first column shows the name of the instance,

the second the number of tasks τ . The third and fourth columns report the best solution value obtained by

the two versions. The last column shows the difference between the solution values. Bold numbers identify

the best value obtained by the two algorithms. In the last row we report the sum of the values for columns

3-5.

AILS with the Tree-Destructor has the best overall performance with a lower total solution value, by 219

units. Also, it finds two more best solutions than its competitor. Hence, for the final version of AILS, we

excluded the Task-Destructors and included the Tree-Destructor.

3.4.2 Investigation of Other AILS Mechanisms

Having selected the destructor configuration, we proceeded to evaluate other important mechanisms of

Algorithm 1. We compared the full AILS version with all proposed mechanisms in place, with five versions

in which we disabled, in turn, one important mechanism. The five reduced versions were as follows:

17

Table 1: Assessment of destructor variants
Only Classical Tree Destructor

Instance τ Destructors No Task Destructors Δ

CBMix4 98 7481 7497 16
CBMix7 168 9515 9501 -14
CBMix8 177 10367 10365 -2
CBMix15 91 8183 8296 113
CBMix16 169 8714 8742 28
CBMix19 212 16271 16190 -81
BHW9 178 875 875 0
BHW12 115 10883 10898 15
BHW15 128 15352 15347 -5
BHW16 410 43878 43877 -1
BHW20 293 16262 16183 -79
DI-NEARP-n240-Q4k 240 18318 18194 -124
DI-NEARP-n422-Q8k 422 14638 14469 -169
DI-NEARP-n442-Q8k 442 43267 43466 199
DI-NEARP-n477-Q2k 477 23003 23092 89
DI-NEARP-n699-Q4k 699 39839 39934 95
DI-NEARP-n833-Q16k 833 32966 32667 -299

Total 319812 319593 -219

• No LS for further intensification to a local optimum

• No kick diversification (lines 24-28 in Algorithm 1)

• Simple improvement instead of Threshold Accepting in ALNS (line 20)

• No quality discrimination for LS intensification (line 16)

• No reset of scores in the ALNS operator pair matrix (line 12)

Again, each version was given 3600 CPU seconds.

18

Table 2: Assessing the influence of AILS mechanisms

No No No Thresh. No Quality No
instance τ full LS Kick Accepting Discrim. Score Reset

CBMix4 98 7497 7824 7578 7487 7501 7512
CBMix7 168 9501 10007 9463 9426 9545 9428
CBMix8 177 10365 10932 10381 10344 10364 10258
CBMix15 91 8296 8557 8240 8225 8253 8246
CBMix16 169 8742 9263 8742 8714 8715 8743
CBMix19 212 16190 17448 16106 16252 16196 16176
BHW9 178 875 930 881 881 873 871
BHW12 115 10898 11226 10886 10882 10917 10893
BHW15 128 15347 15802 15413 15413 15422 15373
BHW16 410 43877 46053 43877 43938 44016 43856
BHW20 293 16183 16940 16242 16223 16268 16253
DI-NEARP-n240-Q4k 240 18194 18514 18399 18194 18188 18404
DI-NEARP-n422-Q8k 422 14469 14479 14469 14469 14442 14442
DI-NEARP-n442-Q8k 442 43466 43367 43466 43264 43264 43466
DI-NEARP-n477-Q2k 477 23092 23628 23092 23002 23004 22944
DI-NEARP-n699-Q4k 699 39934 41053 39934 40415 40389 39924
DI-NEARP-n833-Q16k 833 32667 33406 32667 32638 32572 32667

Total 319593 329429 319836 319767 319929 319456

Table 2 reports computational results from the six resulting AILS versions. Bold numbers identify the

best value, for an instance, among all the runs. The last row contains the sum of the values of each column.

The columns labeled “No LS” refer to the version that does not use local search for further intensification

after a destroy/repair cycle. It finds no best solution for any of the instances. Therefore we decided that

further intensification should be applied. Similarly, we decided to keep the kick because the “No Kick”

version finds just one best solution. We decided to go for simple improvement comparison rather than

Threshold Accepting in ALNS due to better results. The “No Quality Discrimination” version showed

good performance for large instances. Based on the results we use quality discrimination for local search

intensification only for instances with τ < 240. Finally the version without reset of operator pair scores finds

good results, in particular for large instances, so we decided to apply the reset only for instances with τ up

to 240.

Subsequent computational experiments, whose details are not reported here, were used to define the best

choice of the numerical parameters for the selected AILS version. For parameter kmax used as maximum

number of tasks to be removed during the application of a Destructor operator. We found that 0.05τ is a

good value, for several instances, but that with zero arcs required. In the latter case we fixed kmax = 0.2τ .

19

The values of the remaining numerical parameters can be found in Table 3 which summarizes our decisions.

Table 3: Final settings of algorithm components and parameters

Component/Parameter Action/Value

LS always use LS to optimize the current solution
Kick always use the Kick strategy
Threshold Accepting do not use
Quality Acceptance QUALITY FACTOR=1.05 if τ < 240, +∞, otherwise
Score Reset apply when τ ≤ 240
kmax 0.05τ if Ar �= ∅, 0.2τ , otherwise
T0 0.1
Tf 0.001
α 0.95
β 0.75
γ 0.1
N ITER PER STAGE 10
N ITER BEFORE KICK 20.000
PI RESET 500

3.5 AILS details

The detailed workings of AILS is documented with pseudo-code in Algorithms 2–3 and explained below.

Before AILS starts, the minimum traversal (deadheading) costs c′ij connecting any pair of vertices i and

j are computed with the standard Dijkstra algorithm. Recall that τ = |Nr|+ |Er|+ |Ar| is the total number

of requests.

First, the AILS computes an initial solution xinit with the function Construct Initial Solution of

line 8. Experiments showed that the quality of the initial solution had no significant effect on the final result

after a reasonable computing time. Hence, we selected a computationally cheap construction procedure, the

Augment-Merge heuristic proposed by Golden and Wong (1981). For instances with a given upper bound on

the number of vehicles (as the mggdb and mgval benchmarks) we used a modified version of the Augment-

Merge procedure that continues to merge routes, also with negative saving, if the number of routes in the

current solution is larger than the upper bound. If this simple procedure fails in finding a feasible solution, we

solve a bin packing problem where the task demands are objects that have to be packed into bins of capacity

equal to the vehicle capacity. We used the powerful variable neighborhood search procedure developed in

Dell’Amico et al. (2012), modified so that it stops as soon as the number of bins is not larger than the upper

bound. The tasks of each bin are than sequenced with a simple nearest insert procedure.

20

The initial solution is taken to a deep local optimum, the first version of the incumbent xincumbent, by

the most powerful LS, called LS Full.

After initialization, the AILS enters a main loop that is executed until timeout. Within this loop,

combined ALNS and LS is executed. We note that the number of iterations per stage is initialized to the

parameter N ITER PER STAGE, then increased by one for each stage, as initial experiments indicated

that more iterations were needed to reinforce the intensification.

Algorithm 2 Adaptive Iterative Local Search (* Final Detailed Implementation *)

1: function AILS(Instance)
2: comment: Initialize global variables
3: IterationCounter := 0;
4: IterPerStage := N ITER PER STAGE
5: KickCountdown := N ITER BEFORE KICK
6: Reset Roulette Probabilities()
7: comment: Construct first solution and take to deep local optimum
8: xinit :=Construct Initial Solution(Instance)
9: xincumbent :=LS Full(xinit)

10: xLocalIncumbent := xincumbent

11: comment: Main body: iterative phase
12: repeat
13: xcurrent := xBestThisStage := xLocalIncumbent

14: comment: Execute a batch of iterations
15: for i := 0 to IterPerStage do
16: IterationCounter := IterationCounter+ 1
17: NewBest := Combined ALNS and LS
18: if NewBest then
19: IterPerStage := N ITER PER STAGE -1
20: KickCountdown := N ITER BEFORE KICK
21: break
22: end if
23: end for
24: comment: Increase number of iterations
25: IterPerStage := IterPerStage+ 1
26: until Timeout()
27: return xincumbent

28: end function

21

Algorithm 3 Combined ALNS and LS

1: function Combined ALNS and LS
2: comment: Check for stagnation
3: if KickCountdown > 0 then
4: comment: Reset roulette probabilities regularly
5: if (IterationCounter modulo PI RESET) = 0 then Reset Roulette Probabilities()
6: k :=random(1, kmax)
7: xcurrent :=Roulette Destroy and Repair(k)
8: if z(xcurrent) ≥ QUALITY FACTOR · z(xBestThisStage) return FALSE
9: comment: Cost acceptable, intensify with LS1 or LS2 based on 70% probability

10: xcurrent := if random(0,100)≤ 70 then LS1(xcurrent) else LS2(xcurrent)
11: KickCountdown := KickCountdown− 1
12: if z(xcurrent) < z(xBestThisStage) then
13: xBestThisStage := xcurrent

14: comment: Give higher probability to selected Destructor/Constructor pair
15: Update Roulette Probabilities()
16: comment: Return true if an update has been performed
17: return Update Incumbents(xcurrent)
18: end if
19: return FALSE

20: else
21: comment: Nothing has happened for a while, make a major, random destroy and repair
22: k :=random(τ/2, τ)
23: xLocalIncumbent :=Random Destroy and Repair(k)
24: xcurrent := xLocalIncumbent :=LS Full(xLocalIncumbent)
25: Update Incumbents(xcurrent)
26: comment: Return true to exit the for loop of AILS
27: return TRUE

28: end if
29: end function

Parameters, functions and procedures used by AILS are briefly described hereafter.

Timeout: A function which returns TRUE when the given CPU time limit is reached, FALSE otherwise.

Reset Roulette Probabilities: sets all entries in the scores table π for roulette wheel selection to 1.

This procedure is invoked in the initialization, line 6), and also periodically after a certain number of

iterations given by the parameter PI RESET, see function Combined ALNS and LS, line 5.

The following functions are used in in Combined ALNS and LS.

Random Destroy and Repair: line 23 , is called to make a restart (the kick component) after a certain

number of iterations have passed without acceptance of a new current solution. It calls the Random-

Destructor and then the Random-Constructor for a number of tasks in the interval [τ/2, τ).

22

Roulette Destroy and Repair calls the normal, roulette wheel based selection of Destructor and Con-

structor pair, and the execution of these operators with the randomly drawn k value, see line 7.

Update Roulette Probabilities: line 15, increases the probability of selecting a successful Destruc-

tor/Constructor pair.

Update Incumbents: line 17, checks whether the current solution is better than the best solution found

for the current temperature, and in case, updates the corresponding variable. Similarly, there is a test

whether the current solution improves the global incumbent. The function returns TRUE if any of the

variables were updated, FALSE otherwise.

4 Computational Results

We coded our algorithm in C++ and ran it on an Intel Xeon(R) E5530 @2.40GHz with 23.5 GB of memory,

under the Linux Ubuntu 12.04.1 LTS 64-bit operating system. We tested the algorithm on a large number

of instances from the MCGRP, CARP, and CVRP literature.

4.1 Results on the MCGRP Instances

Five MCGRP benchmarks were used, namely, CBMix proposed by Prins and Bouchenoua (2005), BHW and

DI-NEARP proposed by Bach et al. (2013), and mggdb and mgval by Bosco et al. (2013). The CBMix benchmark

consists of 23 randomly generated instances on mixed graphs that imitate real street networks. They contain

from 11 to 150 nodes, and from 29 to 332 edges and arcs. The instances have a number of requests between

20 and 212, located on a combination of nodes, edges, and arcs. On average, the 50% of the nodes, edges,

and arcs have to be serviced.

The BHW set has 20 test problems generated by modifying well-known instances from the CARP literature,

including gdb instances (see Golden et al. (1983)), val instances (see Benavent et al. (1992)), and egl

instances (see Li and Eglese (1996)). Instances contain from 11 to 72 nodes, 0 to 51 edges, and 22 to 380

arcs. The number of requests varies from 20 to 410, and on average, about 62% of the nodes, edges, and

arcs have requests.

The DI-NEARP benchmark with 24 instances originates from six real-life newspaper carrier routing cases

23

in Norway. There are four different variants corresponding to a reasonable range of capacity values for each

case. The instances contain from 563 to 1120 nodes, from 815 to 1450 edges, but no arcs. The number of

requests varies from 240 to 833, and roughly 1/3 of the nodes and edges require service.

In contrast with CBMix, BHW, and DI-NEARP, mggdb and mgval include a fleet size constraint. Each of the

six mggdb sets has 23 instances with between 18 and 48 tasks, and between 3 and 10 vehicles. For mgval,

each of the six sets has 34 instances. The number of tasks is between 38 and 129, and fleet size varies between

2 and 10.

In Table 4 we give the results we obtained on the CBMix instances. We compare our AILS with

• MA: the memetic algorithm by Prins and Bouchenoua (2005), run on a Pentium III at 1.0 GHz;

• SA: the simulated annealing algorithm by Kokubugata et al. (2007), run on a Pentium IV at 1.8 GHz;

• Spider: the commercial VRP solver tested in Hasle et al. (2012), run on an Intel(R) Core(TM) i7 at

3.07 GHz.

For MA and SA, the termination condition was the number of iterations without new accepted solutions.

Spider and AILS were stopped after a given CPU time limit. MA, Spider, and AILS were run just once on

each instance, whereas SA was run ten times by varying the random seed generator. It is worth noting that

Spider has been implemented to solve a large variety of routing problems; it is not specifically designed for

the MCGRP as is the case for the other three solvers in the table.

In each line of Table 4, we give the name of the instance addressed, the number of tasks τ , and the

best known lower bound LB, obtained as the maximum value among those presented by Bach et al. (2013)

and Bosco et al. (2013). For MA, we give the solution value z it obtains, and the number of CPU seconds

required to run to completion, sectot. For SA, we give the average solution value avg z over the 10 attempts

and the average CPU time in seconds to run to completion. For Spider, that was run a single time for two

hours on each instance, we provide the solution value z and the CPU time in seconds in which the incumbent

solution was found, secinc.

To obtain a fair comparison with the previous algorithms, we report the results obtained by our AILS

with a limited CPU time of 200 seconds (MA needs 1078 seconds in the worst case on a slower computer,

whereas SA needs 661 seconds in the worst case, also on a slower computer). We also report the results

obtained by the AILS with a timeout of one CPU hour, which corresponds to our best configuration. For

24

both AILS configurations we report the objective function value and the number of seconds needed to reach

the incumbent solution.

The best objective function values obtained are reported in bold. We observe that the AILS is very

effective, and outperforms on average the competition even within a CPU time limit of 200 seconds. It

achieves an total objective value of 163877, 1.8% lower than the best competitor, SA. When the CPU time

limit is increased to one hour, AILS finds the best solution values for all instances, consistently lowering the

cost to become 2.5% lower than the best competitor. The optimal costs of CBMix12 and CBMix23 (z = 3138

z = 780, respectively), were proven by Bosco et al. (2013). AILS confirms the CBMix12 value for the first

time, whereas the CBMix23 instance is very easy to solve by all four heuristics (the optimal solution is

illustrated in Figure 2).

In Table 5 we present the results we obtained on the BHW set. The lower bound values are taken from

Bach et al. (2013). On this benchmark we can compare only with Spider, hence we report only the results we

obtained with a one CPU hour timeout. AILS provides better or equally good solutions on all BHW instances,

with 1.5% lower total cost. Four BHW results are proven optimal by comparison with the lower bound. Three

were obtained by both Spider and AILS, and one by AILS only.

In Table 6 we compare again the performance of AILS with Spider and with the lower bounds by

Bach et al. (2013), this time on the DI-NEARP benchmark. Also on this set of 24 larger-size instances, the

performance of the AILS is good. Indeed, it yields novel best known solutions to all instances, lowering the

total cost with 1.5% relative to Spider. For some instances, both algorithms find the incumbent solution close

to timeout. This is an indication of the complexity of this test bed, and we believe further improvements

are possible for many of these instances.

Tables 7-12 show the performance of AILS on the mggdb instances, compared to the lower and upper

bounds from the branch-and-cut method reported in Bosco et al. (2013). Of the 114 instances that were

investigated in Bosco et al. (2013), 84 solutions were proven optimal. AILS finds these solutions in less than

5 seconds. For the 30 remaining instances, the sum of objective values is equal for both contestants. Of

these, Bosco et al. (2013) has found two best known solutions, and AILS has found one. With one exception,

AILS finds its best solution within 35 seconds. For the remaining 24 instances that were not investigated

empirically by Bosco et al. (2013) (with more than 7 vehicles), AILS has generated the first upper bounds.

The time until the best solution is found varies a lot within the given time limit of one hour.

25

Similarly, in tables 13-18, we present results for a total of 204 mgval instances, 150 of which has a fleet

size of less than 8 vehicles so they were investigated in Bosco et al. (2013). Of these 150, 70 proven optimal

solutions were provided. AILS finds all of these, generally long before the timeout of one hour. For the 80

solutions where the optimal value is not known, the sum of costs is nine units lower for AILS. Bosco et al.

(2013) has found five best known upper bounds, AILS seven, and the rest are ties. Again, AILS provides

the first feasible solutions for the instances with more than seven vehicles.

4.2 Results on CVRP and CARP Instances

For the CARP, we tested seven well-known benchmarks, 23 gdb instances proposed in Golden et al. (1983),

34 val instances proposed in Benavent et al. (1992), 24 egl instances proposed in Li and Eglese (1996),

and 100 bmcv instances proposed in Beullens et al. (2003) in four datasets (C, D, E and F). In Table 19, we

compare our approach against the six best performing CARP metaheuristics (to our knowledge). These are:

• GLS: proposed by Beullens et al. (2003), based on guided local search (run on a Pentium II at 500

MHz);

• MA-CARP: proposed by Lacomme et al. (2004a), based on genetic algorithms (run on a Pentium III

at 1 GHz);

• BACO: proposed by Lacomme et al. (2004b), based on ant colony optimization (run on a Pentium III

at 800 MHz);

• VNS: proposed by Polacek et al. (2008), based on variable neighborhood search (run on a Pentium IV

at 3.0 GHz). Polacek et al. (2008) reported two sets of results, here we only report the “3.0 GHz”

solutions;

• TSA: proposed by Brandão and Eglese (2008), based on tabu search (run on a Pentium Mobile at

1.4 GHz). Brandão and Eglese (2008) report results of two versions of TSA, here we show the best

configuration, i.e., the second one;

• Ant-CARP: proposed by Santos et al. (2010), based on ant colony optimization (run on an Intel

Pentium III at 1 GHz). Santos et al. (2010) report results of two versions of the Ant-CARP, the

median of the best one is reported here (Ant-CARP 12);

26

Note that ’–’ means that this method has not been tested on this benchmark. We observe that AILS is

among the very best competitors on the CARP.

For the CVRP, four heavily investigated benchmarks were used: 14 instances proposed in Christofides

and Eilon (1969) and Christofides et al. (1979), 13 instances proposed in Taillard (1993), 20 instances from

Golden et al. (1998), and 12 instances from Li et al. (2005).

The four first lines in Table 20 shows the average gap for, to our knowledge, the best performing meta-

heuristics for the CVRP. The last two rows show results for two MCGRP metaheuristics, namely the memetic

algorithm of Prins and Bouchenoua (2005) and AILS. The CVRP metaheuristics are the following:

• GRASP: proposed by Prins (2009), based on GRASP and evolutionary local search (run on a 2.8 GHz

Pentium 4);

• MB: proposed by Mester and Bräysy (2007), based on active-guided evolution strategies (run on a 2.8

GHz Pentium 4);

• MA-CVRP: proposed by Nagata and Bräysy (2009), based on memetic algorithm (run on a 3.2 GHz

Xeon);

• PARALLEL: proposed by Gröer et al. (2011), based on parallel algorithm (run on 50 computers, each

dual-core 2.3 GHz Xeon);

Note that the gaps are calculated relative to the best known solutions from 2012, a few of which have been

improved lately, but the relative performance should be clear. We see that AILS is highly competitive also

for the CVRP, except for the Golden et al. (1998) instances where the quality is still reasonable. As far as

we know, AILS has found a new best known solution for the TAILLARD100D instance, with cost of 1580.46

versus 1581.24 reported in Gambardella et al. (1999).

5 Conclusions

The Mixed Capacitated General Routing Problem, also called the Node, Edge, and Arc Routing Problem,

provides a capacitated multi-vehicle VRP variant that captures an arbitrary mixture of requests on links

and nodes. As far as we know, the problem was first studied by Pandi and Muralidharan (1995). Despite

the fact that the MCGRP is scientifically interesting and has considerable practical value, it has received

27

limited attention. Recently, however, several metaheuristics, a lower bound procedure, an ILP formulation,

and a Branch & Cut exact method have been proposed.

In this paper, we report from the design and investigation of a new hybrid metaheuristic, called AILS,

containing several innovations and non-standard mechanisms, for solving MCGRP instances also of industrial

size. Computational experiments on five MCGRP benchmarks show excellent performance, with best known

solutions to all instances of the CBMix, BHW, and DI-NEARP benchmarks in reasonable time. For the smaller

size mggdb and mgval benchmarks previously investigated by a branch-and-cut method, AILS finds all

proven optimal solutions in a short time, and provides eight new best known upper bounds. A comparative

assessment of the AILS metaheuristic on 181 CARP and 59 CVRP instances proves that our metaheuristic

is also among the best for special cases of the MCGRP.

References

L. Bach, G. Hasle, and S. Wøhlk. A lower bound for the node, edge, and arc routing problem. Computers

& Operations Research, 40(4):943–952, 2013. ISSN 0305-0548.

R. Baldacci and A. Mingozzi. A unified exact method for solving different classes of vehicle routing problems.

Mathematical Programming, 120:347–380, 2009.

R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing problem based on

the set partitioning formulation with additional cuts. Mathematical Programming, 115:351–385, 2008.

E. Bartolini, J.-F. Cordeau, and G. Laporte. Improved lower bounds and exact algorithm for the capacitated

arc routing problem. Mathematical Programming, 137(1–2):1–44, 2011.

E. Benavent, V. Campos, A. Corberan, and M. Mota. The Capacitated Arc Routing Problem. Lower Bounds.

Networks, 22:669–690, 1992.

P. Beullens, L. Muyldermans, D. Cattrysse, and D. Van Oudheusden. A Guided Local Search Heuristic for

the Capacitated Arc Routing Problem. European Journal of Operational Research, 147(3):629–643, 2003.

L. Bodin, V. Maniezzo, and A. Mingozzi. Street routing and scheduling problems. In Randolph W. Hall

28

and Frederick S. Hillier, editors, Handbook of Transportation Science, volume 56 of International Series in

Operations Research & Management Science, pages 413–449. Springer US, 2003. ISBN 978-0-306-48058-4.

A. Bosco, D. Lagana, R. Musmanno, and F. Vocaturo. Modeling and solving the mixed capacitated general

routing problem. Optimization Letters, 7(7):1451–1469, 2013.

J. Brandão and R. Eglese. A deterministic tabu search algorithm for the capacitated arc routing problem.

Computers & Operations Research, 35(4):1112–1126, 2008.

N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. Oper. Res. Quart., 20(3):

309–318, 1969.

N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In N. Christofides, A. Mingozzi,

P. Toth, and C. Sandi, editors, Combinatorial Optimization, pages 315–338. Wiley, Chichester, 1979.

A. Corberán and C. Prins. Recent results on arc routing problems: An annotated bibliography. Networks,

23:50–69, 2010.

A. Corberán, A.N. Letchford, and J.M. Sanchis. A cutting plane algorithm for the general routing problem.

Mathematical Programming, Series A, 90:291–316, 2001.

A. Corberán, G. Mejia, and J.M. Sanchis. New results on the mixed general routing problem. Operations

Research, 53:363–376, 2005.

A. Corberán, E. Mota, and J.M. Sanchis. A comparison of two different formulations for arc routing problems

on mixed graphs. Computers & Operations Research, 33:3384–3402, 2006.

A. Corberán, I. Plana, and J.M. Sanchis. A branch & cut algorithm for the windy general routing problem

and special cases. Networks, 49:245–257, 2007.

M. Dell’Amico, J.C. Dı́az Dı́az, andM. Iori. The bin packing problem with precedence constraints. Operations

Research, 60:1491–1504, 2012.

G. Dueck and T. Scheuer. Threshold accepting: A general purpose optimization algorithm appearing superior

to simulated annealing. Journal of Computational Physics, 90(1):161–175, 1990.

29

L. M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A multiple colony system for vehicle

routing problems with time windows. In New Ideas in Optimization, pages 63–76. McGraw-Hill, 1999.

B. Golden, S. Raghavan, and E. Wasil (eds.). The Vehicle Routing Problem: Latest Advances And New

Challenges, volume 43 of Operations Research/Computer Science Interfaces Series. Springer, Berlin, 2008.

B.L. Golden and R.T. Wong. Capacitated Arc Routing Problems. Networks, 11(3):305–315, 1981.

B.L. Golden, J.S. DeArmon, and E.K. Baker. Computational experiments with algorithms for a class of

routing problems. Computers & Operations Research, 10:47–59, 1983.

B.L. Golden, E.A. Wasil, J.P. Kelly, and I.M. Chao. Metaheuristics in Vehicle Routing. In T. Crainic and

G. Laporte, editors, Fleet management and logistics, pages 33–56. Boston, MA: Kluwer, 1998.

C. Gröer, B. Golden, and E. Wasil. A Parallel Algorithm for the Vehicle Routing Problem. INFORMS

Journal on Computing, 23:315–330, 2011.

J.C.A. Gutiérrez, D. Soler, and A. Hérvas. The capacitated general routing problem on mixed graphs.

Revista Investigacion Operacional, 23:15–26, 2002.

G. Gutin and A.P. Punnen (eds.). The Traveling Salesman and its Variations. Kluwer, Dordrecht, 2002.

G. Hasle, O. Kloster, M. Smedsrud, and K. Gaze. Experiments on the node, edge, and arc routing problem.

Technical Report A23265, ISBN 978-82-14-05288-6, SINTEF, 2012.

H. Kokubugata, A. Moriyama, and H. Kawashima. A practical solution using simulated annealing for

general routing problems with nodes, edges, and arcs. In Engineering Stochastic Local Search Algo-

rithms. Designing, Implementing and Analyzing Effective Heuristics, volume 4638, pages 136–149. Springer

Berlin/Heidelberg, 2007.

P. Lacomme, C. Prins, and W. Ramdane-Chérif. Competitive memetic algorithms for arc routing problems.

Annals of Operations Research, 131(1):159–185, 2004a.

P. Lacomme, C. Prins, and A. Tanguy. First competitive ant colony scheme for the carp. In M. Dorigo,

M. Birattari, C. Blum, L.M. Gambardella, F. Mondada, and T. Stützle, editors, Ant Colony Optimization

30

and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 426–427. Springer

Berlin Heidelberg, 2004b. ISBN 978-3-540-22672-7.

F. Li, B. Golden, and E. Wasil. Very large-scale vehicle routing: New test problems, algorithms, and results.

Computers & Operations Research, 32(5):1165–1179, 2005.

L.Y.O. Li and R.W. Eglese. An Interactive Algorithm for Vehicle Routing for Winter-Gritting. Journal of

the Operational Research Society, 47:217–228, 1996.

H.R. Lourenço, O.C. Martin, and T. Stützle. Iterated local search: Framework and applications. In M. Gen-

dreau and J.-Y. Potvin, editors, Handbook of Metaheuristics, second edition, volume 146 of International

Series in Operations Research & Management Science, pages 363–398. Springer, Berlin, 2010.

R. Martinelli, D. Pecin, M. Poggi, and H. Longo. A branch-cut-and-price algorithm for the capacitated arc

routing problem. In M.P. Pardalos and S. Rebennack, editors, Experimental Algorithms, volume 6630 of

Lecture Notes in Computer Science, pages 315–326. Springer Berlin Heidelberg, 2011.

D. Mester and O. Bräysy. Active-guided evolution strategies for large-scale Vehicle Routing Problems.

Computers & Operations Research, 34:2964–2975, 2007.

Y. Nagata and O. Bräysy. Edge Assembly based Memetic Algorithm for the Capacitated Vehicle Routing

Problem. Networks, 54:205–215, 2009.

C.S. Orloff. A fundamental problem in vehicle routing. Networks, 4(1):35–64, 1974.

R. Pandi and B. Muralidharan. A capacitated general routing problem on mixed networks. Computers &

Operations Research, 22:465–478, 1995.

D. Pisinger and S. Røpke. A general heuristic for vehicle routing problems. Computers & Operations

Research, 34(8):2403–2435, 2007.

M. Polacek, K.F. Doerner, R.F. Hartl, and V. Maniezzo. A variable neighborhood search for the capacitated

arc routing problem with intermediate facilities. Journal of Heuristics, 14(5):405–423, 2008.

C. Prins. A grasp * Evolutionary Local Search Hybrid for the Vehicle Routing Problem. In F.B. Pereira

and J. Tavares, editors, Bio-inspired Algorithms for the Vehicle Routing Problem, volume 161 of Studies

in Computational Intelligence, pages 35–53. Springer, Berlin, 2009.

31

C. Prins and S. Bouchenoua. A memetic algorithm solving the vrp, the carp and general routing problems

with nodes, edges and arcs. In Recent Advances in Memetic Algorithms, volume 166, pages 65–85. Springer

Berlin / Heidelberg, 2005.

S. Ropke and D. Pisinger. An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery

Problem with Time Windows. Transportation Science, 40(4):455–472, 2006.

L. Santos, J. Coutinho-Rodrigues, and J. R. Current. An improved ant colony optimization based algorithm

for the capacitated arc routing problem. Transportation Research Part B: Methodological, 44(2):246–266,

2010.

P. Shaw. A New Local Search Algorithm Providing High Quality Solutions to Vehicle Routing Problems.

Technical report, University of Strathclyde, 1997.

P. Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In

Proceedings CP-98 (Fourth International Conference on Principles and Practice of Constraint Program-

ming), 1998.

É.D. Taillard. Parallel iterative search methods for vehicle routing problems. Networks, 23:661–673, 1993.

P. Toth and D. Vigo. The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and

Applications, Philadelphia, 2002a.

P. Toth and D. Vigo. An overview of vehicle routing problems. In P. Toth and D. Vigo, editors, The Vehicle

Routing Problem, pages 1–26. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia,

2002b.

T. Vidal, T.G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. A hybrid genetic algorithm for multidepot

and periodic vehicle routing problems. Operations Research, 60:611–624, 2012.

S. Wøhlk. New lower bound for the capacitated arc routing problem. Computers & Operations Research,

33:3458–3472, 2006.

S. Wøhlk. A decade of capacitated arc routing. In B. Golden, S. Raghavan, and E. Wasil, editors, The Vehicle

Routing Problem: Latest Advances And New Challenges, volume 43 of Operations Research/Computer

Science Interfaces Series, pages 29–48. Springer, Berlin, 2008.

32

Appendix. Detailed experimental results

Table 4: Computational results on the CBMix instances.

MA SA Spider AILS

(sectot=7200) (sectot=200) (sectot=3600)
Instance τ LB z sectot avg z sectot z secinc z secinc z secinc

CBMix1 48 2409 2632 108.3 2617.1 15.1 2589 1231.0 2585 26.4 2585 26.4
CBMix2 185 9742 12336 1078.5 12322.4 661.4 12222 4156.0 11876 192.4 11749 1869.2
CBMix3 79 3014 3702 157.0 3695.2 56.0 3767 6612.0 3619 195.8 3614 418.3
CBMix4 98 5302 7583 548.1 7728.5 76.1 7802 6744.0 7550 68.4 7483 3384.7
CBMix5 65 3789 4562 100.0 4685.3 41.5 4688 1349.0 4508 118.6 4459 593.1
CBMix6 108 5201 7087 204.5 7101.4 98.0 7139 6687.0 7043 106.3 6969 1619.0
CBMix7 168 7296 9974 662.6 9704.8 351.7 9767 3205.0 9444 139.7 9428 2516.7
CBMix8 177 7956 10714 767.6 10710.2 263.8 10689 1413.0 10405 156.1 10338 2143.9
CBMix9 50 3460 4041 140.8 4132.4 12.5 4147 5517.0 4002 53.3 3991 430.7
CBMix10 107 6432 7755 843.2 7763.2 108.3 7931 4665.0 7538 150.9 7525 1399.5
CBMix11 82 3031 4503 414.7 4599.6 49.8 4525 536.0 4494 75.3 4484 543.8
CBMix12 53 3138 3235 71.3 3235 21.4 3235 14.0 *3138 178.9 *3138 178.9
CBMix13 141 6524 9339 550.6 9270.6 312.8 9332 1427.0 9079 168.4 9037 2840.4
CBMix14 93 5731 8615 357.2 8769.3 65.3 8638 6404.0 8511 26.3 8473 608.7
CBMix15 91 6318 8359 390.2 8385.3 97.3 8443 3553.0 8269 59.0 8221 2962.2
CBMix16 169 7416 9389 536.1 9024.3 445.5 9022 6754.0 8743 185.5 8742 844.6
CBMix17 63 3654 4165 116.1 4107.6 43.0 4235 1271.0 4034 62.2 4034 62.2
CBMix18 127 6089 7411 475.7 7214.6 278.4 7346 1994.0 7130 150.8 7052 2556.7
CBMix19 212 11143 17036 1273.4 16677.5 469.8 16692 5688.0 16322 189.6 16155 451.8
CBMix20 73 3452 4918 164.6 4902.9 50.7 4859 3501.0 4806 126.7 4738 577.9
CBMix21 180 12474 18509 1370.6 18318.3 530.4 18809 5322.0 18060 140.8 17875 1012.9
CBMix22 42 1825 1941 65.8 1970.5 9.5 1941 492.0 1941 8.8 1941 8.8
CBMix23 20 780 *780 20.4 *780 2.7 *780 0.3 *780 0.0 *780 0.0

Sum/Average 2431 126176 167806 452.9 166936.0 176.6 167818 3414.6 163877 112.2 162811 1176.1

33

Table 5: Computational results on the BHW instances.

Spider AILS
(sectot=7200) (sectot=3600)

Instance τ LB z secinc z secinc

BHW1 29 324 337 6.0 337 0.2
BHW2 29 470 *470 36.0 *470 0.1
BHW3 20 326 415 18.0 415 23.2
BHW4 50 240 *240 1.0 *240 0.0
BHW5 162 502 506 610.0 *502 119.2
BHW6 110 388 *388 58.0 *388 10.7
BHW7 229 930 1104 6324.0 1070 2895.1
BHW8 117 644 672 1801.0 668 1273.2
BHW9 178 791 920 2431.0 875 212.3
BHW10 142 6810 8596 6205.0 8524 152.9
BHW11 71 3986 5023 3012.0 4914 2139.6
BHW12 115 6346 11042 6059.0 10887 19.0
BHW13 175 8746 14510 5723.0 14346 2962.6
BHW14 221 17762 25194 4584.0 24833 2812.6
BHW15 128 12193 15564 6728.0 15354 2223.0
BHW16 410 26014 44527 5747.0 43948 3352.9
BHW17 240 15396 26768 6823.0 26235 3548.7
BHW18 194 11202 15833 5532.0 15170 1551.1
BHW19 107 7080 9480 3605.0 9388 677.2
BHW20 293 10730 16625 6769.0 16291 1748.1

Sum/Average 3020 130880 198214 3603.6 194855 1286.1

34

Table 6: Computational results on the DI-NEARP instances.

Spider AILS
(sectot=7200) (sectot=3600)

Instance τ LB z secinc z secinc

DI-NEARP-n240-Q2k 240 16376 24371 4569.0 23807 3003.0
DI-NEARP-n240-Q4k 240 14362 18352 4495.0 18197 2374.2
DI-NEARP-n240-Q8k 240 13442 15937 6421.0 15884 2001.8
DI-NEARP-n240-Q16k 240 13116 14953 5274.0 14717 1058.4
DI-NEARP-n422-Q2k 422 11623 19133 6629.0 18943 2486.2
DI-NEARP-n422-Q4k 422 11284 15987 4524.0 15869 940.0
DI-NEARP-n422-Q8k 422 11220 14627 2925.0 14442 813.7
DI-NEARP-n422-Q16k 422 11198 14357 4661.0 14339 240.5
DI-NEARP-n442-Q2k 442 35068 52062 7091.0 51052 1303.4
DI-NEARP-n442-Q4k 442 33585 45906 6308.0 44952 3339.7
DI-NEARP-n442-Q8k 442 32985 45395 5964.0 43264 1029.5
DI-NEARP-n442-Q16k 442 32713 42797 6480.0 42683 1452.8
DI-NEARP-n477-Q2k 477 19722 23124 5996.0 22896 3218.8
DI-NEARP-n477-Q4k 477 18031 20198 7006.0 20035 1923.5
DI-NEARP-n477-Q8k 477 17193 18561 2999.0 18490 1546.5
DI-NEARP-n477-Q16k 477 16873 18105 4079.0 18040 2410.3
DI-NEARP-n699-Q2k 699 34101 59817 6993.0 58948 1776.7
DI-NEARP-n699-Q4k 699 26891 40473 7178.0 40124 2101.8
DI-NEARP-n699-Q8k 699 23302 30992 6095.0 30799 2871.4
DI-NEARP-n699-Q16k 699 21967 27028 3173.0 26999 3370.4
DI-NEARP-n833-Q2k 833 32435 56877 7135.0 56102 3556.7
DI-NEARP-n833-Q4k 833 29381 42407 6861.0 41192 3383.6
DI-NEARP-n833-Q8k 833 28453 35267 6940.0 34812 2688.3
DI-NEARP-n833-Q16k 833 28233 33013 4046.0 32567 3407.6

Sum/Average 12452 533554 729739 5576.8 719153 2179.1

35

Table 7: Computational results on the mggdb-0.25 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mggdb-0.25-1 21 280 *280 2079.4 *280 0.0
mggdb-0.25-2 25 317 349 21600.0 349 1.8
mggdb-0.25-3 22 278 *278 923.9 *278 0.0
mggdb-0.25-4 18 289 *289 22.7 *289 0.0
mggdb-0.25-5 24 364 394 21600.0 394 28.7
mggdb-0.25-6 21 292 *292 14.9 *292 0.0
mggdb-0.25-7 20 290 *290 40.4 *290 0.1
mggdb-0.25-8 45 - - - 336 28.4
mggdb-0.25-9 47 - - - 309 2.5
mggdb-0.25-10 22 265 *265 2.8 *265 0.0
mggdb-0.25-11 41 345 356 21600.0 356 0.0
mggdb-0.25-12 22 400 459 21600.0 459 0.1
mggdb-0.25-13 26 374 388 21600.0 388 1.0
mggdb-0.25-14 20 107 *107 1.4 *107 0.0
mggdb-0.25-15 20 55 *55 0.5 *55 0.0
mggdb-0.25-16 25 98 *98 5.0 *98 0.0
mggdb-0.25-17 25 71 *71 1.0 *71 0.0
mggdb-0.25-18 32 139 144 21600.0 144 0.0
mggdb-0.25-19 10 53 *53 1.1 *53 0.1
mggdb-0.25-20 20 116 *116 7.8 *116 0.0
mggdb-0.25-21 31 145 146 21600.0 146 0.3
mggdb-0.25-22 38 - - - 160 0.8
mggdb-0.25-23 48 - - - 181 44.0

Sum/Average no ”-” 445 4278 4430 8121.1 4430 1.7
Sum/Average all 623 5416 4.7

36

Table 8: Computational results on the mggdb-0.30 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mggdb-0.30-1 21 273 *273 4279.5 *273 0.0
mggdb-0.30-2 24 270 301 21600.0 301 1.2
mggdb-0.30-3 19 270 *270 4447.9 *270 0.0
mggdb-0.30-4 18 260 *260 39.7 *260 0.0
mggdb-0.30-5 25 369 388 21600.0 388 0.0
mggdb-0.30-6 22 276 *276 443.4 *276 0.4
mggdb-0.30-7 20 273 *273 2870.3 *273 0.0
mggdb-0.30-8 46 - - - 331 12.9
mggdb-0.30-9 46 - - - 281 20.5
mggdb-0.30-10 22 242 *242 12.1 *242 0.0
mggdb-0.30-11 43 381 387 21600.0 387 0.4
mggdb-0.30-12 21 395 467 21600.0 467 0.6
mggdb-0.30-13 24 447 486 21600.0 483 14.6
mggdb-0.30-14 17 101 *101 184.7 *101 0.0
mggdb-0.30-15 19 44 *44 0.5 *44 0.0
mggdb-0.30-16 24 105 *105 2.8 *105 4.5
mggdb-0.30-17 22 65 *65 0.6 *65 0.0
mggdb-0.30-18 30 144 *144 1.6 *144 0.0
mggdb-0.30-19 10 51 *51 0.4 *51 0.0
mggdb-0.30-20 18 94 *94 27.3 *94 0.1
mggdb-0.30-21 28 120 121 21600.0 121 0.0
mggdb-0.30-22 37 - - - 153 0.1
mggdb-0.30-23 47 - - - 167 591.9

Sum/Average no ”-” 427 4180 4348 7469.0 4345 1.1
Sum/Average all 603 5277 28.1

37

Table 9: Computational results on the mggdb-0.35 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mggdb-0.35-1 21 252 *252 601.0 *252 0.0
mggdb-0.35-2 22 284 *284 1435.2 *284 0.0
mggdb-0.35-3 20 243 *243 1701.0 *243 0.0
mggdb-0.35-4 17 242 *242 27.6 *242 0.0
mggdb-0.35-5 23 282 309 21600.0 309 1.0
mggdb-0.35-6 21 262 *262 1552.4 *262 0.0
mggdb-0.35-7 22 272 *272 412.7 *272 0.0
mggdb-0.35-8 38 - - - 316 2835.9
mggdb-0.35-9 45 - - - 266 7.7
mggdb-0.35-10 24 268 *268 813.6 *268 0.1
mggdb-0.35-11 41 303 *303 3875.7 *303 0.3
mggdb-0.35-12 20 461 *461 15229.9 *461 0.1
mggdb-0.35-13 24 402 417 21600.0 417 33.7
mggdb-0.35-14 18 84 *84 369.3 *84 0.3
mggdb-0.35-15 18 44 *44 0.7 *44 0.0
mggdb-0.35-16 22 75 *75 2271.4 *75 0.0
mggdb-0.35-17 23 62 *62 0.9 *62 0.0
mggdb-0.35-18 30 135 *135 0.4 *135 0.0
mggdb-0.35-19 9 51 *51 0.2 *51 0.0
mggdb-0.35-20 20 96 *96 75.8 *96 1.6
mggdb-0.35-21 28 118 120 21600.0 120 0.0
mggdb-0.35-22 36 - - - 139 0.2
mggdb-0.35-23 44 - - - 179 156.2

Sum/Average no ”-” 423 3936 3980 4903.6 3980 2.0
Sum/Average all 586 4880 132.0

38

Table 10: Computational results on the mggdb-0.40 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mggdb-0.40-1 19 279 *279 392.9 *279 0.1
mggdb-0.40-2 22 281 308 21600.0 308 10.6
mggdb-0.40-3 20 225 *225 88.2 *225 0.0
mggdb-0.40-4 17 238 *238 9.8 *238 0.0
mggdb-0.40-5 22 289 344 21600.0 344 0.0
mggdb-0.40-6 19 270 *270 418.9 *270 0.0
mggdb-0.40-7 19 282 *282 7631.9 *282 0.4
mggdb-0.40-8 40 - - - 331 1.9
mggdb-0.40-9 45 - - - 275 2.3
mggdb-0.40-10 22 191 *191 3.5 *191 0.0
mggdb-0.40-11 38 270 283 21600.0 283 0.3
mggdb-0.40-12 19 412 *412 10608.8 *412 0.0
mggdb-0.40-13 23 373 405 21600.0 406 20.8
mggdb-0.40-14 18 62 *62 76.0 *62 0.1
mggdb-0.40-15 18 37 *37 0.2 *37 0.4
mggdb-0.40-16 21 84 *84 0.7 *84 0.0
mggdb-0.40-17 21 65 *65 0.5 *65 0.0
mggdb-0.40-18 27 119 *119 45.3 *119 0.2
mggdb-0.40-19 10 38 *38 0.6 *38 0.2
mggdb-0.40-20 19 94 *94 15.9 *94 0.1
mggdb-0.40-21 28 104 *104 207.6 *104 0.1
mggdb-0.40-22 33 - - - 129 0.1
mggdb-0.40-23 42 - - - 160 1279.6

Sum/Average no ”-” 402 3713 3840 5573.7 3841 1.8
Sum/Average 562 4736 57.3

39

Table 11: Computational results on the mggdb-0.45 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mggdb-0.45-1 17 259 *259 283.4 *259 0.0
mggdb-0.45-2 21 279 298 21600.0 298 0.0
mggdb-0.45-3 19 237 *237 246.1 *237 0.0
mggdb-0.45-4 17 228 *228 10.3 *228 0.0
mggdb-0.45-5 21 309 350 21600.0 350 0.0
mggdb-0.45-6 18 218 *218 109.0 *218 0.0
mggdb-0.45-7 20 243 *243 2121.2 *243 0.0
mggdb-0.45-8 41 - - - 296 0.8
mggdb-0.45-9 41 - - - 277 47.9
mggdb-0.45-10 22 214 *214 84.9 *214 0.0
mggdb-0.45-11 39 278 297 21600.0 297 0.1
mggdb-0.45-12 21 321 393 21600.0 393 0.9
mggdb-0.45-13 21 371 423 21600.0 423 773.9
mggdb-0.45-14 16 66 *66 102.7 *66 0.0
mggdb-0.45-15 16 34 *34 0.5 *34 0.2
mggdb-0.45-16 20 70 *70 238.2 *70 0.0
mggdb-0.45-17 21 53 *53 1.7 *53 0.0
mggdb-0.45-18 25 112 123 21600.0 123 0.0
mggdb-0.45-19 8 48 *48 0.9 *48 0.0
mggdb-0.45-20 16 78 *78 7.2 *78 0.0
mggdb-0.45-21 24 122 *122 10530.8 *122 0.1
mggdb-0.45-22 33 - - - 136 0.0
mggdb-0.45-23 39 - - - 145 490.0

Sum/Average no ”-” 382 3540 3754 7544.0 3754 40.8
Sum/Average all 536 5608 57.1

40

Table 12: Computational results on the mggdb-0.50 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mggdb-0.50-1 18 214 *214 86.8 *214 0.0
mggdb-0.50-2 19 233 269 21600.0 269 0.0
mggdb-0.50-3 19 218 *218 399.7 *218 0.0
mggdb-0.50-4 15 219 *219 16.4 *219 0.0
mggdb-0.50-5 20 292 *292 2889.3 *292 0.0
mggdb-0.50-6 17 276 *276 1171.8 *276 0.0
mggdb-0.50-7 19 265 *265 379.0 *265 0.1
mggdb-0.50-8 37 - - - 310 83.8
mggdb-0.50-9 41 - - - 265 11.2
mggdb-0.50-10 19 194 *194 3.7 *194 0.1
mggdb-0.50-11 38 249 275 21600.0 275 28.5
mggdb-0.50-12 19 445 *445 13492.7 *445 0.0
mggdb-0.50-13 21 214 259 21600.0 261 20.1
mggdb-0.50-14 16 75 *75 20.6 *75 0.1
mggdb-0.50-15 15 37 *37 0.4 *37 0.0
mggdb-0.50-16 19 66 *66 36.3 *66 0.0
mggdb-0.50-17 20 53 *53 0.9 *53 0.0
mggdb-0.50-18 25 111 121 21600.0 121 0.0
mggdb-0.50-19 8 44 *44 0.3 *44 0.0
mggdb-0.50-20 15 81 *81 20.7 *81 0.0
mggdb-0.50-21 24 86 *86 15691.3 *86 0.2
mggdb-0.50-22 31 - - - 123 0.8
mggdb-0.50-23 34 - - - 126 513.0

Sum/Average no ”-” 366 3372 3489 6347.9 3491 2.6
Sum/Average all 509 4315 28.6

41

Table 13: Computational results on the mgval-0.25 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mgval-0.25-1A 54 177 *177 0.3 *177 3.4
mgval-0.25-1B 47 217 *217 0.1 *217 63.2
mgval-0.25-1C 51 - - - 279 2604.0
mgval-0.25-2A 40 259 *259 6.1 *259 8.6
mgval-0.25-2B 48 336 *336 941.5 *336 0.2
mgval-0.25-2C 48 - - - 480 109.1
mgval-0.25-3A 44 89 *89 3.2 *89 2.2
mgval-0.25-3B 41 125 *125 7217.3 *125 0.1
mgval-0.25-3C 41 130 153 21600.0 153 0.1
mgval-0.25-4A 89 504 514 21600.0 514 1.0
mgval-0.25-4B 96 507 537 21600.0 537 0.8
mgval-0.25-4C 100 504 525 21600.0 525 130.8
mgval-0.25-4D 96 - - - 683 569.8
mgval-0.25-5A 92 485 *485 2418.2 *485 3.3
mgval-0.25-5B 86 472 493 21600.0 493 2.7
mgval-0.25-5C 93 561 584 21600.0 584 1.6
mgval-0.25-5D 85 - - - 644 583.3
mgval-0.25-6A 67 274 *274 11.8 *274 0.0
mgval-0.25-6B 63 254 263 21600.0 263 9.7
mgval-0.25-6C 66 - - - 324 46.4
mgval-0.25-7A 84 297 *297 121.3 *297 8.4
mgval-0.25-7B 85 355 *355 1859.9 *355 1.8
mgval-0.25-7C 85 - - - 378 20.4
mgval-0.25-8A 88 507 510 21600.0 510 3.9
mgval-0.25-8B 84 405 423 21600.0 423 3.4
mgval-0.25-8C 78 - - - 545 191.6
mgval-0.25-9A 122 367 371 21600.0 371 9.4
mgval-0.25-9B 112 354 358 21600.0 358 40.7
mgval-0.25-9C 119 347 365 21600.0 365 146.6
mgval-0.25-9D 121 - - - 429 69.7
mgval-0.25-10A 129 492 *492 5.1 *492 7.1
mgval-0.25-10B 123 528 *528 1.6 *528 119.8
mgval-0.25-10C 125 480 483 21600.0 483 700.1
mgval-0.25-10D 119 - - - 567 2864.5

Sum/Average no ”-” 2072 9026 9213 11735.5 9213 50.7
Sum/Average all 2669 12869 244.9

42

Table 14: Computational results on the mgval-0.30 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mgval-0.30-1A 53 170 *170 4.4 *170 12.0
mgval-0.30-1B 47 194 *194 24.5 *194 21.1
mgval-0.30-1C 48 - - - 270 347.8
mgval-0.30-2A 42 233 *233 1.6 *233 0.2
mgval-0.30-2B 49 347 *347 3310.0 *347 3.2
mgval-0.30-2C 45 - - - 495 416.8
mgval-0.30-3A 46 105 *105 6.3 *105 0.1
mgval-0.30-3B 41 115 *115 31.3 *115 0.0
mgval-0.30-3C 41 127 153 21600.0 153 2.0
mgval-0.30-4A 87 466 477 21600.0 477 44.8
mgval-0.30-4B 98 491 533 21600.0 533 19.2
mgval-0.30-4C 98 469 498 21600.0 500 34.6
mgval-0.30-4D 94 - - - 653 2112.2
mgval-0.30-5A 86 445 *445 96.3 *445 1.0
mgval-0.30-5B 83 465 490 21600.0 490 289.1
mgval-0.30-5C 87 513 551 21600.0 553 0.6
mgval-0.30-5D 86 - - - 621 896.8
mgval-0.30-6A 66 240 252 21600.0 252 0.3
mgval-0.30-6B 64 262 *262 6331.6 *262 525.0
mgval-0.30-6C 64 - - - 320 116.7
mgval-0.30-7A 77 324 *324 1.7 *324 2.1
mgval-0.30-7B 82 336 344 21600.0 344 0.8
mgval-0.30-7C 85 - - - 354 6.7
mgval-0.30-8A 88 428 431 21600.0 431 0.6
mgval-0.30-8B 83 391 400 21600.0 400 61.8
mgval-0.30-8C 75 - - - 522 9.8
mgval-0.30-9A 118 356 357 21600.0 357 3.7
mgval-0.30-9B 110 344 348 21600.0 348 1.6
mgval-0.30-9C 112 330 335 21600.0 335 8.5
mgval-0.30-9D 122 - - - 430 1807.7
mgval-0.30-10A 127 481 484 21600.0 484 464.2
mgval-0.30-10B 123 435 441 21600.0 441 2.7
mgval-0.30-10C 125 464 478 21600.0 475 1534.0
mgval-0.30-10D 121 - - - 539 1144.9

Sum/Average no ”-” 2033 8531 8767 14216.3 8768 121.3
Sum/Average all 2625 12338 291.0

43

Table 15: Computational results on the mgval-0.35 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mgval-0.35-1A 47 158 *158 0.2 *158 7.2
mgval-0.35-1B 48 192 *192 39.6 *192 3.4
mgval-0.35-1C 48 - - - 290 190.8
mgval-0.35-2A 40 286 *286 2.0 *286 0.1
mgval-0.35-2B 46 326 *326 135.1 *326 4.6
mgval-0.35-2C 45 - - - 485 9.4
mgval-0.35-3A 43 84 *84 2.9 *84 0.4
mgval-0.35-3B 41 113 *113 129.0 *113 0.0
mgval-0.35-3C 40 130 150 21600.0 150 0.1
mgval-0.35-4A 84 415 430 21600.0 430 0.0
mgval-0.35-4B 90 488 531 21600.0 531 0.1
mgval-0.35-4C 93 480 516 21600.0 516 143.6
mgval-0.35-4D 96 - - - 643 501.7
mgval-0.35-5A 82 436 454 21600.0 454 3139.8
mgval-0.35-5B 81 439 467 21600.0 467 42.9
mgval-0.35-5C 82 539 586 21600.0 586 165.9
mgval-0.35-5D 80 - - - 578 2605.5
mgval-0.35-6A 64 248 *248 50.2 *248 0.2
mgval-0.35-6B 62 250 *250 1715.7 *250 0.2
mgval-0.35-6C 60 - - - 312 75.4
mgval-0.35-7A 78 264 *264 1.2 *264 0.8
mgval-0.35-7B 79 325 *325 208.8 *325 1.1
mgval-0.35-7C 82 - - - 336 59.1
mgval-0.35-8A 84 414 415 21600.0 415 0.2
mgval-0.35-8B 78 376 385 21600.0 385 43.1
mgval-0.35-8C 75 - - - 494 1011.9
mgval-0.35-9A 116 324 *324 1071.1 *324 4.5
mgval-0.35-9B 106 321 332 21600.0 331 113.3
mgval-0.35-9C 115 316 329 21600.0 328 78.4
mgval-0.35-9D 115 - - - 430 554.8
mgval-0.35-10A 122 475 *475 2230.3 *475 1338.2
mgval-0.35-10B 118 457 461 21600.0 461 40.0
mgval-0.35-10C 122 411 431 21600.0 430 172.8
mgval-0.35-10D 114 - - - 523 117.5

Sum/Average no ”-” 1961 8267 8532 11455.4 8529 212.0
Sum/Average all 2533 11980 306.7

44

Table 16: Computational results on the mgval-0.40 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mgval-0.40-1A 48 165 *165 1.3 *165 0.4
mgval-0.40-1B 43 196 *196 1415.0 *196 4.2
mgval-0.40-1C 46 - - - 263 67.2
mgval-0.40-2A 38 222 *222 1.7 *222 0.0
mgval-0.40-2B 49 311 *311 1506.0 *311 0.2
mgval-0.40-2C 43 - - - 469 5.6
mgval-0.40-3A 41 86 *86 0.4 *86 0.5
mgval-0.40-3B 40 110 *110 7.3 *110 0.0
mgval-0.40-3C 38 120 148 21600.0 148 0.9
mgval-0.40-4A 82 400 *400 11152.6 *400 2.2
mgval-0.40-4B 89 395 423 21600.0 423 13.3
mgval-0.40-4C 89 424 462 21600.0 462 259.4
mgval-0.40-4D 88 - - - 622 298.8
mgval-0.40-5A 82 426 *426 195.3 *426 8.9
mgval-0.40-5B 77 402 424 21600.0 424 9.6
mgval-0.40-5C 84 488 524 21600.0 527 0.2
mgval-0.40-5D 79 - - - 608 1667.0
mgval-0.40-6A 61 224 *224 150.2 *224 3.3
mgval-0.40-6B 58 211 *211 858.3 *211 0.1
mgval-0.40-6C 62 - - - 312 3.1
mgval-0.40-7A 76 271 *271 956.9 *271 0.1
mgval-0.40-7B 77 270 *270 1609.0 *270 36.6
mgval-0.40-7C 80 - - - 332 92.8
mgval-0.40-8A 80 393 *393 4331.6 *393 7.9
mgval-0.40-8B 77 356 371 21600.0 371 396.4
mgval-0.40-8C 72 - - - 517 398.1
mgval-0.40-9A 114 337 341 21600.0 341 6.9
mgval-0.40-9B 105 319 327 21600.0 327 41.0
mgval-0.40-9C 104 280 295 21600.0 295 67.5
mgval-0.40-9D 116 - - - 382 119.9
mgval-0.40-10A 118 406 *406 5107.9 *406 0.5
mgval-0.40-10B 113 431 433 21600.0 433 1.2
mgval-0.40-10C 114 417 432 21600.0 433 186.3
mgval-0.40-10D 112 - - - 482 77.8

Sum/Average no ”-” 1897 7660 7871 10595.7 7875 41.9
Sum/Average all 2458 11238 111.1

45

Table 17: Computational results on the mgval-0.45 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mgval-0.45-1A 47 168 *168 7.1 *168 0.2
mgval-0.45-1B 41 166 *166 3.2 *166 5.5
mgval-0.45-1C 44 - - - 258 559.0
mgval-0.45-2A 38 251 *251 0.5 *251 0.0
mgval-0.45-2B 46 314 *314 1312.0 *314 524.0
mgval-0.45-2C 44 - - - 462 0.4
mgval-0.45-3A 41 82 *82 4.8 *82 0.1
mgval-0.45-3B 39 91 *91 3.2 *91 2.6
mgval-0.45-3C 38 122 143 21600.0 143 0.9
mgval-0.45-4A 80 381 *381 1198.9 *381 197.3
mgval-0.45-4B 91 423 471 21600.0 471 0.6
mgval-0.45-4C 85 434 481 21600.0 480 120.7
mgval-0.45-4D 87 - - - 577 31.1
mgval-0.45-5A 78 378 391 21600.0 392 0.7
mgval-0.45-5B 75 379 416 21600.0 416 13.6
mgval-0.45-5C 79 445 492 21600.0 492 15.3
mgval-0.45-5D 76 - - - 552 1768.2
mgval-0.45-6A 60 213 *213 528.5 *213 0.9
mgval-0.45-6B 58 210 *210 892.7 *210 3.2
mgval-0.45-6C 58 - - - 296 14.2
mgval-0.45-7A 73 261 *261 200.1 *261 14.1
mgval-0.45-7B 77 290 294 21600.0 294 0.5
mgval-0.45-7C 76 - - - 336 612.8
mgval-0.45-8A 76 367 370 21600.0 370 3.2
mgval-0.45-8B 72 341 360 21600.0 360 10.0
mgval-0.45-8C 65 - - - 498 319.2
mgval-0.45-9A 109 299 306 21600.0 306 6.9
mgval-0.45-9B 100 311 323 21600.0 323 10.9
mgval-0.45-9C 102 273 291 21600.0 291 10.6
mgval-0.45-9D 108 - - - 387 1.6
mgval-0.45-10A 115 385 388 21600.0 388 3.4
mgval-0.45-10B 108 390 399 21600.0 399 1.4
mgval-0.45-10C 111 382 403 21600.0 403 36.4
mgval-0.45-10D 105 - - - 487 2888.8

Sum/Average no ”-” 1839 7356 7665 13126.0 7665 39.3
Sum/Average 2370 10926 211.1

46

Table 18: Computational results on the mgval-0.50 instances.

Bosco et al. (2013) AILS
(sectot=3600)

Instance τ LB z sectot z secinc

mgval-0.50-1A 43 145 *145 6.28 *145 0.0
mgval-0.50-1B 42 170 *170 2.92 *170 0.8
mgval-0.50-1C 40 - - - 255 62.7
mgval-0.50-2A 38 248 *248 0.57 *248 0.0
mgval-0.50-2B 44 284 *284 278.96 *284 0.1
mgval-0.50-2C 40 - - - 464 20.2
mgval-0.50-3A 40 75 *75 1.62 *75 1.4
mgval-0.50-3B 37 107 *107 801.35 *107 0.0
mgval-0.50-3C 36 117 137 21600.00 137 0.0
mgval-0.50-4A 78 350 *350 144.85 *350 0.7
mgval-0.50-4B 82 361 413 21600.00 413 98.0
mgval-0.50-4C 83 442 488 21600.00 488 6.0
mgval-0.50-4D 83 - - - 580 1192.1
mgval-0.50-5A 75 367 *367 1296.00 *367 8.5
mgval-0.50-5B 73 348 378 21600.00 378 24.0
mgval-0.50-5C 74 417 459 21600.00 457 6.8
mgval-0.50-5D 72 - - - 541 810.2
mgval-0.50-6A 53 210 *210 123.21 *210 0.6
mgval-0.50-6B 56 210 *210 368.05 *210 0.0
mgval-0.50-6C 55 - - - 293 4.3
mgval-0.50-7A 74 248 *248 126.78 *248 3.8
mgval-0.50-7B 71 276 *276 1429.50 *276 0.3
mgval-0.50-7C 74 - - - 320 9.8
mgval-0.50-8A 74 382 388 21600.00 388 0.4
mgval-0.50-8B 68 330 350 21600.00 350 27.4
mgval-0.50-8C 63 - - - 501 24.7
mgval-0.50-9A 105 306 *306 4.05 *306 44.6
mgval-0.50-9B 97 262 278 21600.00 278 22.2
mgval-0.50-9C 100 279 301 21600.00 292 55.8
mgval-0.50-9D 103 - - - 358 1674.6
mgval-0.50-10A 109 378 385 21600.00 385 42.9
mgval-0.50-10B 110 364 369 21600.00 369 1171.2
mgval-0.50-10C 108 389 406 21600.00 406 47.5
mgval-0.50-10D 110 - - - 457 251.8

Sum/Average no ”-” 1770 7065 7348 10551.4 7337 62.5
Sum/Average all 2285 10536 165.1

47

Table 19: Average percentage above the BKS for top-performing CARP algorithms in the literature.

Problem set

Algorithm gdb val egl C D E F

GLS 0.000 0.032 – 0.047 0.011 0.098 0.000
MA 0.025 0.132 0.805 – – – –
BACO 0.154 0.351 2.348 – – – –
VNS – 0.056 0.538 – – – –
TSA 0.070 0.100 0.725 0.054 0.164 0.168 0.249
Ant-CARP 0.102 0.083 0.558 0.210 0.083 0.360 0.199

MA 0.285 – – – – – –
AILS 0.000 0.053 0.330 0.018 0.000 0.228 0.000

Table 20: Average percentage above the BKS for top-performing CVRP algorithms in the literature.

Problem set

Algorithm
Christofides et al.

(1969, 1979) Taillard (1993)
Golden et al.

(1998) Li et al. (2005)

GRASP 0.071 – 0.525 –
MB 0.027 0.236 0.263 0.202
MA-CVRP 0.030 0.096 0.210 –
PARALLEL 0.085 0.131 0.411 0.299

MA 0.389 – – –
AILS 0.073 0.180 1.063 0.489

48

Technology for a better society
www.sintef.no

	AILS SINTEF Report integrated signed.pdf
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	AILS SINTEF Report integrated
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	MCGRP
	AILS SINTEF Report version.pdf

	MCGRP
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	MCGRP
	AILS SINTEF Report version.pdf

	Page 2 signed
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	AILS SINTEF Report integrated
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	MCGRP
	AILS SINTEF Report version.pdf

	MCGRP
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	MCGRP
	AILS SINTEF Report version.pdf

	MCGRP
	AILS SINTEF Report integrated signed.pdf
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	AILS SINTEF Report integrated
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	MCGRP
	AILS SINTEF Report version.pdf

	MCGRP
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	MCGRP
	AILS SINTEF Report version.pdf

	Page 2 signed
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	AILS SINTEF Report integrated
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	MCGRP
	AILS SINTEF Report version.pdf

	MCGRP
	AILS SINTEF Report integrated.pdf
	AILS SINTEF Report version.pdf
	MCGRP
	AILS SINTEF Report version.pdf

