mgval_0.30
Here you find instance definitions and the best known upper and lower bounds (to our knowledge) for the 34 instances of the mgval (ß=0.30) benchmark derived from the CARP by Bosco et al. [BLMV]. The values for the upper and lower bounds reported in the table only include traversal costs, i.e. service costs are omitted.

Instance definitions (text)

The mgval_0.30 instance definitions can be found, as a zip-file here.

 

Best known results for the mgval_0.30 benchmark

For the Upper Bound values in blue, you get the detailed solution by clicking on the value.

InstanceUpper Bound ReferenceLower BoundReferenceGAP(%)
mgval_0.30_1A* 170 BLMV 170 BLMV 0
mgval_0.30_2A* 233 BLMV 233 BLMV 0
mgval_0.30_3A* 105 BLMV 105 BLMV 0
mgval_0.30_4A* 477 BLMV 477 BILV 0
mgval_0.30_5A* 445 BLMV 445 BLMV 0
mgval_0.30_6A* 252 BLMV 252 BILV 0
mgval_0.30_7A* 324 BLMV 324 BLMV 0
mgval_0.30_8A* 431 BLMV 431 BILV 0
mgval_0.30_9A* 357 BLMV 357 BILV 0
mgval_0.30_10A* 484 BLMV 484 BLMV 0
mgval_0.30_1B* 194 BLMV 194 BLMV 0
mgval_0.30_2B* 347 BLMV 347 BLMV 0
mgval_0.30_3B* 115 BLMV 115 BLMV 0
mgval_0.30_4B 533 BLMV 531 BILV 0.38
mgval_0.30_5B 490 BLMV 484 BILV 1.24
mgval_0.30_6B* 262 BLMV 262 BLMV 0
mgval_0.30_7B* 344 BLMV 344 BILV 0
mgval_0.30_8B* 400 BLMV 400 BILV 0
mgval_0.30_9B* 348 BLMV 348 BILV 0
mgval_0.30_10B* 441 BLMV 441 BILV 0
mgval_0.30_1C 270 DDHI 255 BILV 5.88
mgval_0.30_2C 495 DDHI 492 BILV 0.61
mgval_0.30_3C 153 BLMV 149 BILV 4.79
mgval_0.30_4C 498 BLMV 492 BILV 1.22
mgval_0.30_5C 551 BLMV 549 BILV 0.36
mgval_0.30_6C 320 DDHI  307 BILV  4.23
mgval_0.30_7C 354 DDHI  347 BILV  2.02
mgval_0.30_8C 522 DDHI  510 BILV  2.35
mgval_0.30_9C* 335 BLMV 335 BILV 0
mgval_0.30_10C* 475 DDHI 475 BILV 0
mgval_0.30_4D 653 DDHI  652 BILV 0.15 
mgval_0.30_5D 621 DDHI  612 BILV  1.47 
mgval_0.30_9D 430 DDHI 421.13  BILV  2.11 
mgval_0.30_10D 539 DDHI  530.8 BILV  1.54 
 

References

BILV - C. Bode, S. Irnich, D. Laganà, F. Vocaturo. Two-Phase Branch-and-Cut for the Mixed Capacitated General Routing Problem. Technical Report LM-2014-02, University of Mainz.

BLMVA. Bosco, D. Lagana, R. Musmanno, and F. Vocaturo. Modeling and solving the mixed capacitated general routing problem. Optimization Letters (2012), pp 1-19, doi 10.1007/s11590-012-0552-y.

DDHI - M. Dell'Amico, J. C. Díaz Díaz, G. Hasle, M. Iori. An Adaptive Iterated Local Search for the Mixed Capacitated General Routing Problem. SINTEF Report A26278. 2014-05-16. ISBN 978-82-14-05361-6.

G - K. A. Gaze, G. Hasle, C. Mannino. Column Generation for the Mixed Capacitated General Routing Problem. Talk at WARP 1 - First Workshop on Arc Routing Problems, Copenhagen May 22-24 2013.

Published June 22, 2012