1000 customers
Here you find instance definitions and the best known solutions (to our knowledge) for the 1000 customer instances of Gehring & Homberger's extended VRPTW benchmark. The version reported here has a hierarchical objective: 1) Minimize number of vehicles 2) Minimize total distance. Distance and time should be calculated with double precision, total distance results are rounded to two decimals. Exact methods typically use a total distance objective and use integral or low precision distance and time calculations. Hence, results are not directly comparable.

Instance definitions (text)

Here you find a zip file with the 1000 customer instances.

Best known results for Gehring & Homberger's 1000 customer instances

The instance names in blue are hyperlinks to files with corresponding detailed solutions. They have all been checked by our solution checker. Note that many best known solutions do not have a reference to a peer reviewed publication. For these, important details on the solution algorithm, the computing time, and the experimental platform are probably not available. Further, there is no guarantee that the solutions have been produced without using external information, such as detailed solutions published earlier. We may later introduce two categories: 'properly published' and 'freestyle', the latter with no restrictions.

Instance Vehicles Distance Reference Date
c1_10_1q 100 42478.95 GH 2001
c1_10_2 90 42222.96 CAINIAO Oct-18
c1_10_3 90 40101.36 Q 17-sep-15
c1_10_4 90 39468.60 Q 17-apr-13
c1_10_5i 100 42469.18 RP 25-feb-05
c1_10_6 99 43830.21 Q 05-sep-14
c1_10_7 97 43372.03 SCR Nov-18
c1_10_8 92 42660.70 SCR Oct-18
c1_10_9 90 40341.06 SCR Oct-18
c1_10_10 90 39852.44 SCR 10-sep-18
 
c2_10_1s 30 16879.24 LL 2001
c2_10_2b 29 17126.39 NBD 2009
c2_10_3 28 16829.47 CAINIAO
SCR
Tie, Nov-18
c2_10_4 28 15607.48 SCR Nov-18
c2_10_5 30 16561.29 VCGP 31-jul-12
c2_10_6 29 16863.71 SCR Oct-18
c2_10_7 29 17622.64 SCR Oct-18
c2_10_8 28 16512.43 SCR Oct-18
c2_10_9 29 16363.94 SCR Oct-18
c2_10_10 28 15937.45 SCR Oct-18
 
r1_10_1 100 53435.98 SCR 22-mar-18
r1_10_2 91 48511.21 SCR Nov-18
r1_10_3 91 44815.01 SCR Nov-18
r1_10_4 91 42529.28 CAINIAO Nov-18
r1_10_5 91 50547.11 SCR Nov-18
r1_10_6 91 47055.39 SCR Nov-18
r1_10_7 91 44113.58 CAINIAO
SCR
Tie, Nov-18
r1_10_8 91 42362.56 CAINIAO Nov-18
r1_10_9 91 49334.58 SCR Nov-18
r1_10_10 91 47492.33 SCR Nov-18
 
r2_10_1
19 42188.86 NB 09-sep-14
r2_10_2 19 33411.21 SCR Oct-18
r2_10_3 19 24916.88 SCR Oct-18
r2_10_4 19 17856.01 SCR Oct-18
r2_10_5 19 36216.05 SCR Oct-18
r2_10_6 19 29998.44 CAINIAO Nov-18
r2_10_7 19 23219.76 SCR Oct-18
r2_10_8 19 17453.15 CAINIAO Nov-18
r2_10_9 19 32995.71 CAINIAO Sep-18
r2_10_10 19 30207.49 SCR Oct-18
 
rc1_10_1 90 45933.10 CAINIAO Nov-18
rc1_10_2 90 43832.03 SCR Nov-18
rc1_10_3 90 42242.03 SCR Nov-18
rc1_10_4 90 41436.97 SCR Nov-18
rc1_10_5 90 45137.98 CAINIAO Nov-18
rc1_10_6 90 44987.27 CAINIAO Nov-18
rc1_10_7 90 44569.70 SCR Nov-18
rc1_10_8 90 44021.56 CAINIAO Nov-18
rc1_10_9 90 43992.38 CAINIAO Nov-18
rc1_10_10 90 43598.45 SCR Nov-18
 
rc2_10_1 20 30276.27 CAINIAO Nov-18
rc2_10_2 18 26104.09 SCR Oct-18
rc2_10_3 18 19914.31 SCR Nov-18
rc2_10_4 18 15693.76 SCR Nov-18
rc2_10_5 18 27074.98 SCR Oct-18
rc2_10_6 18 26741.27 CAINIAO 27-sep-18
rc2_10_7 18 25031.83 SCR Nov-18
rc2_10_8 18 23609.74 SCR Nov-18
rc2_10_9 18 22945.56 CAINIAO Nov-18
rc2_10_10 18 21853.62 CAINIAO Oct-18
    

b: Detailed solution provided by BC4
i: Detailed solution provided by Pete Bailey, Paul Smith, IFS 360 Scheduling.
q: Detailed solution provided by Q.
s: Detailed solution provided by SCR.

References

BC4, Mirosław BŁOCHO, Zbigniew J. CZECH, "A parallel memetic algorithm for the vehicle routing problem with time windows". 3PGCIC 2013, 8th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing.

BSJ - Bjørn Sigurd Johansen, BjornSigurdJohansen@hotmail.com, DSolver 09-2004

BSJ2 - Bjørn Sigurd Johansen, BjornSigurdJohansen@hotmail.com, DSolver version2 05-2005.

CAINIAO - Zhu He, Longfei Wang, Weibo Lin, Yujie Chen, Haoyuan Hu (haoyuan.huhy@cainiao.com ), Yinghui Xu, & VRP Team
(Ying Zhang, Guotao Wu, Kunpeng Han et al.). Unpublished work by CAINIAO AI.

EOE - Eirik Krogen Hagen, EOE Koordinering DA. Exploring infeasible and feasible regions of the VRPTW and PDPTW through penalty based tabu search. Working paper.

GH - H. Gehring and J. Homberger, "A Parallel Two-phase Metaheuristic for Routing Problems with Time Windows," Asia-Pacific Journal of Operational Research, 18, 35-47, (2001).

LL - H. Li and A. Lim, "Large Scale Time-Constrained Vehicle Routing Problems: A General Metaheuristic Framework with Extensive Experimental Results," Submitted to Artificial Intelligence Review, 2001.

MB - Mester, D. and O. Bräysy (2005), “Active Guided Evolution Strategies for Large Scale Vehicle Routing Problems with Time Windows”. Computers & Operations Research 32, 1593-1614. 

MB2 - Mester, D & O. Bräysy (2012). "A new powerful metaheuristic for the VRPTW”, working paper, University of Haifa, Israel.

MK - M. Koch, "An approach combining two methods for the vehicle routing problem with time windows",  The solutions were presented at EURO and EURO XX Conference 2004.

NB - Jakub Nalepa, Miroslaw Blocho. "Co-operation in the Parallel Memetic Algorithm", International Journal of Parallel Programming 214, pp 1-28. http://dx.doi.org/10.1007/s10766-014-0343-4

NBC - Jakub Nalepa, Miroslaw Blocho, and Zbigniew J. Czech. "Co-operation schemes for the parallel memetic algorithm". In Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Waniewski, editors, Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, pages 191–201. Springer Berlin Heidelberg, 2014. ISBN 978-3-642-55223-6. doi: 10.1007/978-3-642-55224-3 19.

NBD - Yuichi Nagata, Olli Bräysy, and Wout Dullaert (2010). A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows. Comput. Oper. Res. 37, 4 (April 2010), 724-737.

PGDR - Eric Prescott-Gagnon, Guy Desaulniers and Louis-Martin Rousseau. A Branch-and-Price-Based Large Neighborhood Search Algorithm for the Vehicle Routing Problem with Time Windows. (2007)

Q - Quintiq. http://www.quintiq.com/optimization/vrptw-world-records.html .

RP - S. Ropke & D.Pisinger. "A general heuristic for vehicle routing problems",  technical report, Department of Computer Science, University of Copenhagen.

SCR - Piotr Sielski (psielski@emapa.pl), Piotr Cybula, Marek Rogalski, Piotr Beling and Andrzej Jaszkiewicz, Emapa S.A. (http://www.emapa.pl), "New methods of VRP problem optimization", unpublished research funded by The National Centre for Research and Development. project number: POIR.01.01.01.-00-0222/16.

WA - Ruud Wagemaker. MSc thesis in progress. Tilburg University.

WW - Witoslaw Wierzbicki. "Design and implementation of parallel programs with shared memory". Master of Science Thesis, University of Silesia, Sosnowiec, 2012.

VCGP - T. Vidal, T. G. Crainic, M. Gendreau, C. Prins. "A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows", Computers & Operations Research, Vol. 40, No. 1. (January 2013), pp. 475-489.

Published April 18, 2008