For discussing DSB guidelines regarding climate adaptation and guideline community emergency responsibility, and applying ROS assessment tools. 14.01.2010

A ROS Assessment Tool for Adapting Community Urban Flood Risk and Vulnerability caused by Climate Change

 ${\sf Nie^1\ L.M.,\ Heilemann^1\ K.,\ Hafskjold^1\ L.S.,\ Sægrov^{1,\,2}\ S.,\ Johannessen^3\ B.G.}$

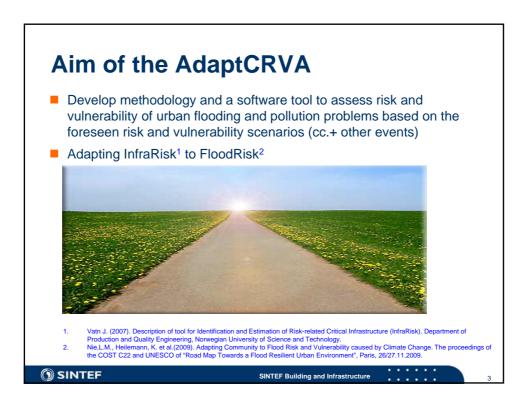
1 Dept. of Infrastructure, SINTEF, Norway 2 Dept. of Hydraulic and Environmental Engineering, NTNU, Norway 3 Dept. of Infrastructure and Urban Development, Trondheim Municipality, Norway

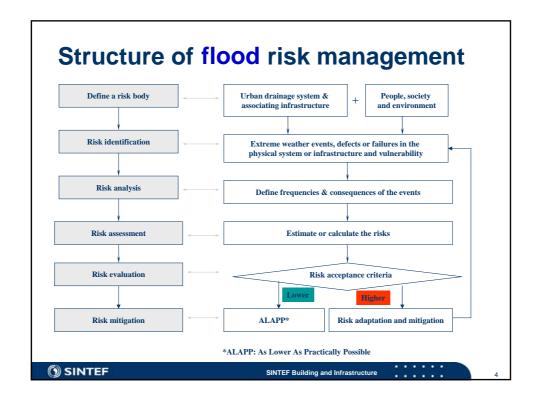
* Result of AdaptCRVA

(1) SINTEF

SINTEF Building and Infrastructure

Outline of the presentation


- Aim of AdaptCRVA
- Approach of risk assessment and management analysis
- A case study in Trondheim
- Conclusions and perspectives for future development
- Questions and recommendations for discussion regarding a risk assessment tool for community ROS analysis (floods and other natural hazards)


SINTEF

SINTEF Building and Infrastructure

.

2

Risk identification

- Main events
 - 1. Meteorological extreme events
 - 2. Technical failures in the physical systems
 - 3. Accidents
- Social Manageability and Critical Infrastructure Functions (SCFs)

Functions of the infrastructure (such as electric power, telecommunication and transportation system, water drainage system or flood forecasting system), community manageability and individuals

Vulnerability Influence Factors (VIFs)

Dimension of the area, geographical location, population density, climate type, time and duration of occurrence of the events, dependency and relation with social critical functions and preparedness to cope with emergency

(1) SINTEF

SINTEF Building and Infrastructure

-

Frequency of main events

- Extreme weather events,
 Frequency is usually expressed in terms of return periods, e.g.
 - 1 in n years or n times per year.
- Technical failure,
 - Assume or give expected number of failure occurrence per year, e.g. twice per year of pumping station our of work.
- We used the same frequency for different risk events.

Table 2. Frequency of urban flooding

Likelihood	Return period (1 in n in years)
Rare	Rarer than 1 in 1000 years
Unlikely	Rarer than 1 in 200 years
Occasional	Once in 100 years
Likely	Once per 10-50(20) years
Almost certain	Once or several times per year

^{*}Table 2 integrates the frequencies for designing sewers and flood protection for rivers.

SINTEF

SINTEF Building and Infrastructure

6

^{*} DSB Guideline uses frequency of 10 and 50 year. P9.

Weighting the relation of SCFs and main events

Code	Description	Relation			
I100°	Loss of the SCF is the cause for the main event	SCF < before> the main event			
B100°	The SCF acts as a complete barrier				
R90°	The SCF is very important for the main event				
R60	The SCF is important for the main event	SCF <before and<="" td=""></before>			
R40	The SCF is medium import for the main event	after> the main			
R15	The SCF is not very important for the main event	event			
R05	The SCF is less important for the main event				
V90°	The SCF is very vulnerable with respect to the main event				
V60	The SCF is vulnerable with respect to the main event				
V40	The SCF is medium vulnerable with respect to the main event	SCF < affected> by			
V15	The SCF is not very vulnerable with respect to the main event	trie main event			
V05	The SCF is less vulnerable with respect to the main event				

^{*} I, B, R and V represent the relation between the SCFs and the main events, I – initial (cause) to the main event; B – barrier; R – relation of SCF to main event; V – vulnerable degree of the SCFs versus the main events.

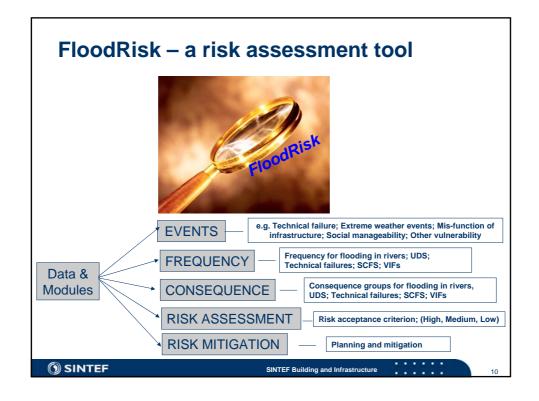
SINTEF

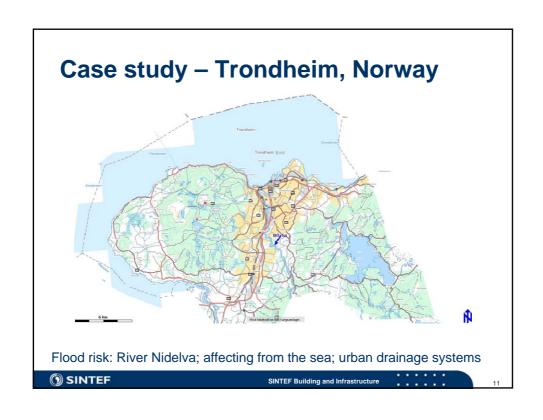
SINTEF Building and Infrastructure

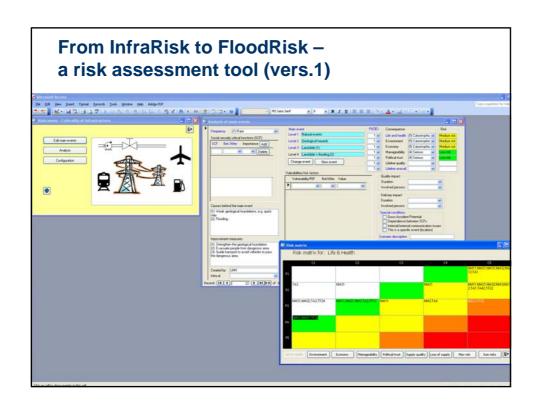
::::::

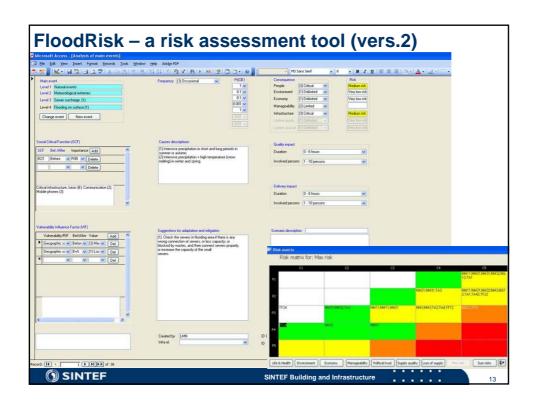
Frequency calculation of TOP event

For a TOP (joint) event that frequency of occurrence is a combined result of several other basic events, frequency is calculated according to the logic relations of the events:

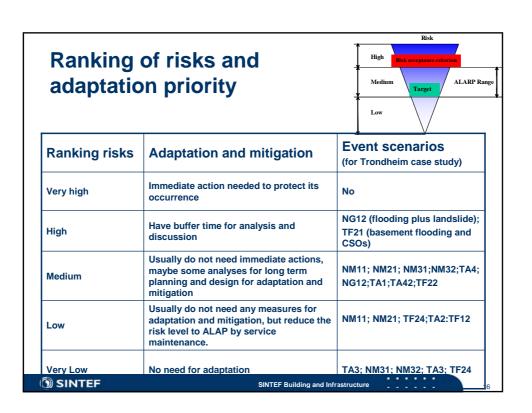

- AndGate: Two of both
- OrGate: More than one of two or more
- KooNGate: K occurrences in N events


(Vatn, 2007)


SINTEF


SINTEF Building and Infrastructure

Likelihood	People	Economic damage (e.g. affected basements)	Community and infrastructures	Environment	
Insignificant	No person is affected.	Minor damage in basements or other places	Limited or no impact on daily community activity.	No pollution to environment	
minor	People are getting affected.	Up to 50 house basements are flooded.	Impacts are visible and some economic damage.	Some pollution to receiving waters	
moderate	Up to 1 house evacuated.	Up to 100 house basements are flooded.	Significant impacts on community activities.	Increased pollution to receiving waters or in house basements.	
Major	1 - 2 persons was drawn due to flood.	Over 100 house basements are seriously flooded.	Serious impacts on community activities and infrastructure.	Serious pollution in flooding houses or basements, receiving waters and on surface.	
Over 10 persons are drawn to dead, and a group of local people are evacuated.		Over 500 house basements are flooded.	Serious and long time impacts on community activities and infrastructure.	Very serious and long period pollutior and impacts to diverse environment	



			Risk	assessm	ent			
×	Edit main events		Edit frequency		Edit consequence			Ranking of risk
.1	ZZZZZZZZZZZ	L1 Li	Frequency G1 Frequency Gi	L1 Li	Consequence G1 Consequence Gi		Sum of ris	sks Level
.2	yyyyyyyyy xxxxxxxxxx	ы	rrequericy Gr	L3	Life and health	Level	Sum or 18	Level
4	CCCCCCCCCC		Edit probability	L3 L4	Economic damage	Level		Level
Add	Delete	L1	Probability G1	L5	Environment	Level		Level
		Li	Probability Gi	L6	Indrastrcture	Level		Level
				L7	Societal manageability	Level		Level
				L8	Political trust	Level		Level
	Social manageability		Measure of SCFs		Scenarios description	s		
ldd	Delete	Add	Delete		·			
	Event i	Time	Functions					
Add	Vulnerability Delete Indicator i	Add Time	Measure of VIFs Delete Functions		Recording of events Refer InfraRisk			
Add	Barriers Delete Measure	Add Time	Measure of Barriers Delete Function		Tool bars			

Prepare input data Data and coding for main events, SCFs and VIFs													
Main events L1. Event domain	L2. Even	4 dome.	. 12	Front (com:		I.4. Scenari	ft-			Code L1	I.2	L3	1.4
L1. Event domain	L2. Even	it domain	L3.	L3. Event (cause)			surface (1)			N.	NM	NM1	NM11
			Floo	ding and sewer	Flooding or rainwater in house basements (2)					NM	NM1	NM12	
				-	Combined S	Combined Sewer Overflow (CSO) (3)					NM1	NM13	
							Storm surge in the sea (1)					NM2	NM21
	Meteorole	ogical			Flooding in lower areas near the sea or fjord (2)					NM	NM2	NM22	
	Meteorological extremes		Sea	level rise + stori	Flooding inundation on streets and in buildings (basements) (3)					NM	NM2	NM23	
Natural events							Overflow from sea to sewers (4)					NM2	NM24
					Combined Sewer Overflow (CSO) from sewer systems to receiving waters (5)					NM	NM2	NM25	
			Rive	r flooding (3)		Flooding in river flood plains (1)					NM	NM3	NM31
				g (e)		Flooding on river sides/banks (2)					NM	NM3	NM32
	Geologica	al hazards	s Lane	dslide (1)		Landslide (1)					NG	NG1	NG11
						Landslide + flooding (2)					NG	NG1	NG12
	Consequences n(1)								n(1)	T	TA	TA1	TA11 TA21
										TA	TA2	TA22	
	Frequency or Probability			C1	C2	C3	C4	C5	,	T T	TA	TA3	TA31
			P1	Very lower	Very lower	Very lower	Low	Medium	2)	T	TA	TA3	TA32
			۲ı	very lower	v er y lower	very lower	LOW	iviedium		T	TA	TA4	TA41
Technical			P2	Very lower	Very lower	Low	Medium	Medium		T	TA	TA4	TA42
problems			PS	Do		1	Mar Proces	Mar Proces	L Park		T	TF	TF1
	ncy			P3	Very lower	Low	Medium	Medium	High		T	TF	TF1
	dne		P4	Low	Medium	Medium	High	Very high	er equipments out of	T	TF	TF2	TF21
	Fre		P5	Medium	Medium	High	Very high	Very high	her equipments out	T	TF	TF2	TF22

Conclusions and perspectives

The current development:

- It is possible to include climate variables in ROS analysis
- The overall flood risk can be assessed by the software tool, and provide visual risks in a risk matrix with different concern and levels.
- Easy to learn
- Time consuming in preparing the input data (main events, SCFs, VIFs, and coding)

Need for further development/ Improvement

- Decide properly the frequency or probability of different basic events and calculate the frequency of joint events:
 - with regard to climate change, we need change in frequency of (P;T; Sea level; Q, etc.)
- Evaluate properly of consequences (tangible & intangible)
- Assess the risk <u>quantitatively</u>, if possible
- To be improved for general use (interface, database, access to update)

(1) SINTER

SINTEF Building and Infrastructure

17

Questions and recommendations

of a risk assessment tool for community ROS analysis

- Simple and user friendly, basic training
- Time-consuming of identifying events, SCFs, VIFs; deciding frequency, consequences, mitigation measures etc, better to establish a national database for different natural hazards or accidents (e.g. water disease outbreaks); or use as appendices in the guideline.
- Assessment the economic damage (Municipalities + FHN)
- The data base (appendices) should be updated, e.g. every 2nd year
- Risk acceptance criterion/a
- Update the guideline in good time, DSB 1994 2010

Thank you very much for your attention

(1) SINTEF

SINTEF Building and Infrastructure

.

18