I4MS ICT INNOVATION FOR MANUFACTURING SMES

14MS

INDEX

- 1. SME 's World
 - 1.1. I4MS' Target
 - 1.2. I4MS Ecosystem
- 2. I4MS Projects
- 3. I4MS Community

SME's World

- High tech SMEs want to/must innovate
- SMEs need a market window of opportunity
- SMEs must be connected along the value chain
- SMEs often operate in the wake of the big ones
- SME schemes must be quick and dynamic
- SMEs need much more than €s:
 - √ access to technology & competences
 - √ access to infrastructures
 - √ access to new markets
 - ✓ on an EU-scale across sectors and regions
 - √ through networks of competence centres

I4MS´ Target

14MS Ecosystem

- Key role of SMEs in value chains: users and suppliers
- SME need more than €s: access to competences and networks across Europe
- Different ICT technologies:
 - HPC-Cloud based Simulation
 - Robotics
 - Sensor & Laser applications
- Major implementation means:
 - Application experiments
 - Assessment experiments
- Clustered around networks of competence centres
- Collaboration in a network of innovation multipliers

Projects involved

- Key role of SMEs in value chains: users and suppliers
- Clustered around networks of competence centres
- Open Calls for experiments during course of projects

Cloud-based, one-stop-shop solution providing a scalable platform for small or larger scale **simulations**, and enable the wider take-up of simulation technologies in manufacturing and engineering SME's.

- * Simulation platform that allows seamless access to multiple heterogeneous cloud resources and provides a high level of abstraction to users when accessing these resources for simulations in a one-stop-shop solution.
- * Platform as a Service (PaaS) solution to build customised cloud applications
- * Enable simulation software providers to offer **Software** as a Service (SaaS) simulation solutions
- * Enable SMEs in the manufacturing and engineering domain to access simulation services
- * Seamless access to HPC resources in order to speed up the simulations on-demand
- * Define generic and concrete business models for SMEs in the manufacturing/engineering sector to facilitate the take-up of cloud-based simulation solutions

Coordinator:

UNIVERSITY OF WESTMINSTER#

3D SCAN INSOLE DESIGNER

- PC SW simulation used in the design of tailored insoles.
- Migration to a cloud ubiquitous platform will help in the internationalization of the company and in the availability of computing resources for tailored design to increase production.
- Simulation helps in:
 - Detection of wrongly scanned areas without points or too few points

- Screening of flat areas in the foot profile due to an incorrect scan process
- Detection of painful or unpleasant contact areas of the foot with the insole

2MoRO's BFly®

- Comparison between aircraft in-service data with design data and limits set by manufacturers to offer other valuable services:
- 2MoRO will translate several services available on BFly® as a set of interoperable cloud-based services (SaaS) that can be potentially deployed as a dedicated solution (PaaS)

- Benefits for:
 - Simulation software providers: offering results of data-mining and calculation (statistical or comparative) in real-time or in timely manner as resources are shared.
 - Aircraft manufacturers: more services, less investment. Optimised business process and knowledge management.

Computational Cloud services and workflows for AgilE Engineering SMEs

- CloudFlow enables engineers to access services on the Cloud spanning domains such as
 - CAD,
 - CAM,
 - CAE (CFD),
 - systems and
 - PLM,
- combines them to integrated workflows
- leveraging HPC resources.

http://www.eu-cloudflow.eu

- Building Cloud of HPC Resources to solve SMEs' business challenges
- Complementing generic SME initiatives in FP7 with specific support to deliver economic growth through modeling and simulation
- Focus on problem solving not technical development
- Bring together all of the players in a marketplace
- €22m costs, €16m EC funding, 45 partners growing to 90+ over the 3 year duration, 6 HPC Cloud provides

- Increase the performance of the machining processes ⇒ intelligent fixtures
- Control and adapt the behaviour of the fixture \Rightarrow development of smart fixtures
- Establish fixture design methodologies for different process limitations

SCENARIO 1: VIBRATION SCENARIO 2: DEFORMATION

SCENARIO 3: POSITIONING

- Monitoring, control and adaptation of the process ⇒ modify the fixture's behaviour and include process-systems interactions ⇒ Improvement of precision, quality and time/cost
- Based on state of the art sensors and actuators, with suitable/ad-hoc control algorithms.
- Requirements:
 - Configurable (Modular, reuse of components...)
 - Fast (Automation, data management...)
 - Accurate (Adaptability to forces, deflections...)
 - Durable (self control for wear...)

14MS

VIBRATIONS - Turbine Case

- Vibrations come from:
- Low stiffness
- Changes in geometry
- Process and clamping forces
- Solution:
- Smart fixtures: sensors+actuators+control
- Vibration detection (sensors)
- Changes in the dynamic behaviour (actuators): variable clamping force and position, added mass/damping/stiffness

DEFORMATIONS – Structural part

Distortions come from:

- Residual stress + Material removal
- Slender shape
- Clamping forces

Solution:

- Intelligent clamps: sensors+actuators+control
- Force measurement (sensors)
- Change position and clamping force (actuators)
- Machining steps: clamp in pre-distorted shape

Assessment

procedures

Goal of APPOLO: establish and coordinate connections between **end-users** with demand for laser technologies, knowledge accumulated in **application laboratories** of research institutes and universities and **laser equipment manufacturers** in order to **facilitate** faster **validation** of process feasibility and **adaptation** or **customization** of technology & equipment for manufacturing conditions

Core of the consortium – laser application laboratories:

- around Europe;
- connected to a virtual hub,

in order to

- accumulate knowledge and infrastructure
- promote the easy-to-access environment
- develop and validate of laser-based technologies in

8+ equipment assessment value chains

Industrial Advisory
Board
Input from other assessment chains

Equipment

assessment

New partners & assessment experiments - after the Open Competitive Call in 2014

Integration for process validation

Equipment in processing

Validation with end-user

■ Thin film CIGS solar cell scribing with picosecond lasers

Laser patterning and direct writing for flexible 3D electronics

Laser surface texturing

■ Parallel activities on sensing and monitoring techniques for processing and validation

Mission

 LASHARE aims to share laser expertise to accelerate innovation for manufacturing SME's through Laser based Equipment Assessment (LEA)

Objectives

- Support 14 SME's from the supplier side to advance their labdemonstrated laser based equipment towards robust solutions
- Focus the laser based equipment towards the assessment criteria and the market demand defined by the 14 industrial users
- Provide an independent source of information on laser based equipment and its integration into manufacturing environments
- Support another 10 12 LEA's in a second set of assessments through an Open Call (approx. Q3/2014)

PARROT - Parallel multi-beam ablation of rotationally symmetric work pieces

- Modify the surface microstructure to achieve new properties
- Develop industrially robust diffractive optical elements and optics to split the laser beam into multiple spots

Increase manufacturing efficiency by parallel processing

FLAT – Plug in laser diode module for warm sheet metal forming

- Integrate a vibration resistant laser diode module directly into a sheet forming machine
- Deliver up to 1kW@1cm² using direct regular water cooling for operation from 10 to 40°C
- Reduce forces in roll forming by 50%
- Implement a totally spring-back-free process with 100% geometric certainty after forming

Supplier

User

Research Partner

monocrom 🦲

Supplier

User

Research Partner

I4MS Community

www.i4ms.eu

4MS

Silvia de la Maza smaza@innovalia.org

