Linear independence and Locally Refined B-splines

Tor Dokken
SINTEF, Oslo, Norway
Paper preprint:
http://www.sintef.no/Projectweb/Computational-Geometry/

Spline space over Box-partitions

- LR B-splines, T-splines (as originally defined) and Hierarchal B-splines can all be regarded as splines defined over box-partitions.

■ Hierarchical B-spline by multi-level mid-element refinement, with possible restriction of refinements to certain regions

- T-splines by what is allowed by the T-spline refinement rules

■ LR-splines by a sequence of local refinements starting from a tensor product grid

- introducing additional B-splines is specified regions as required

Box-partition

$\square \Omega \subseteq \mathbb{R}^{d}$ a d-box in \mathbb{R}^{d}.

- A finite collection \mathcal{E} of d-boxes in \mathbb{R}^{d} is said to be a box partition of Ω if

1. $\beta_{1}^{o} \cap \beta_{2}^{o}=\varnothing$ for any $\beta_{1}^{o}, \beta_{2}^{o} \in \mathcal{E}$, where $\beta_{1}^{o} \neq \beta_{2}^{o}$.
2. $\cup_{\beta \in \mathcal{E}} \beta=\Omega$.

μ-extended box-mesh (adding multiplicities)

- A multiplicity $\boldsymbol{\mu}$ is assigned to each mesh-rectangle
- Supports variable knot multiplicity for Locally Refined Bsplines.

Refinement by inserting meshrectangles giving a constant split

Constant split

μ-extended LR-mesh

A μ-extended LR-mesh is a μ-extended box-mesh (\mathcal{M}, μ) where either

1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
2. $(\mathcal{M}, \mu)=\left(\tilde{\mathcal{M}}+\gamma, \tilde{\mu}_{\gamma}\right)$ where $(\tilde{\mathcal{M}}, \tilde{\mu})$ is a μ-extended LRmesh and γ is a constant split of $(\tilde{\mathcal{M}}, \tilde{\mu})$.

All multiplicities not shown are 1.

μ-extended LR-mesh

A μ-extended LR-mesh is a μ-extended box-mesh (\mathcal{M}, μ) where either

1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
2. $(\mathcal{M}, \mu)=\left(\tilde{\mathcal{M}}+\gamma, \tilde{\mu}_{\gamma}\right)$ where $(\tilde{\mathcal{M}}, \tilde{\mu})$ is a μ-extended LRmesh and γ is a constant split of $(\tilde{\mathcal{M}}, \tilde{\mu})$.

All multiplicities not shown are 1.

μ-extended LR-mesh

A μ-extended LR-mesh is a μ-extended box-mesh (\mathcal{M}, μ) where either

1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
2. $(\mathcal{M}, \mu)=\left(\tilde{\mathcal{M}}+\gamma, \tilde{\mu}_{\gamma}\right)$ where $(\tilde{\mathcal{M}}, \tilde{\mu})$ is a μ-extended LRmesh and γ is a constant split of $(\tilde{\mathcal{M}}, \tilde{\mu})$.

All multiplicities not shown are 1.

μ-extended LR-mesh

A μ-extended LR-mesh is a μ-extended box-mesh (\mathcal{M}, μ) where either

1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
2. $(\mathcal{M}, \mu)=\left(\tilde{\mathcal{M}}+\gamma, \tilde{\mu}_{\gamma}\right)$ where $(\tilde{\mathcal{M}}, \tilde{\mu})$ is a μ-extended LRmesh and γ is a constant split of $(\tilde{\mathcal{M}}, \tilde{\mu})$.

All multiplicities not shown are 1.

μ-extended LR-mesh

A μ-extended LR-mesh is a μ-extended box-mesh (\mathcal{M}, μ) where either

1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
2. $(\mathcal{M}, \mu)=\left(\tilde{\mathcal{M}}+\gamma, \tilde{\mu}_{\gamma}\right)$ where $(\tilde{\mathcal{M}}, \tilde{\mu})$ is a μ-extended LRmesh and γ is a constant split of $(\tilde{\mathcal{M}}, \tilde{\mu})$.

All multiplicities not shown are 1.

μ-extended LR-mesh

A μ-extended LR-mesh is a μ-extended box-mesh (\mathcal{M}, μ) where either

1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
2. $(\mathcal{M}, \mu)=\left(\tilde{\mathcal{M}}+\gamma, \tilde{\mu}_{\gamma}\right)$ where $(\tilde{\mathcal{M}}, \tilde{\mu})$ is a μ-extended LRmesh and γ is a constant split of $(\tilde{\mathcal{M}}, \tilde{\mu})$.

All multiplicities not shown are 1.

LR B-spline

Let (M, μ) be an μ-extended LR-mesh in \mathbb{R}^{d}. A function $B: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called an LR B-spline of degree \boldsymbol{p} on (\mathcal{M}, μ) if B is a tensor-product B -spline with minimal support in (\mathcal{M}, μ).

Splines on a μ-extended LR-mesh

We define a sequence of μ-extended LR-meshes $\left(\mathcal{M}_{1}, \mu_{1}\right), \ldots,\left(\mathcal{M}_{q}, \mu_{q}\right)$ with corresponding collections of minimal support B-splines $\mathcal{B}_{1}, \ldots, \mathcal{B}_{q}$.
For $j=1, \ldots, q-1$ creating $\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)=\left(\mathcal{M}_{j}+\gamma_{j}, \mu_{j, \gamma_{j}}\right)$ from $\left(\mathcal{M}_{j}, \mu_{j}\right)$ involves inserting a mesh-rectangles γ_{j} that increases the number of B-splines. More specifically:
$\square \gamma_{j}$ splits $\left(\mathcal{M}_{j}, \mu_{j}\right)$ in a constant split.

- at least on B-spline in \mathcal{B}_{j} does not have minimal support in $\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$.
After inserting γ_{j} we start a process to generate a collection of minimal support B-splines $\mathcal{B}_{j+1} \operatorname{over}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ from \mathcal{B}_{j}.

Going from $\left(\mathcal{M}_{j}, \mu_{j}\right)$ to $\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$

Example LR B-spline refinement

Video by PhD fellow Kjetil A. Johannessen, NTNU, Trondheim, Norway.

Ensuring linear independence

We say that $\left(\mathcal{M}_{j+1}, \mu_{j+1}, \boldsymbol{p}\right)$ goes hand in hand with $\left(\mathcal{M}_{j}, \mu_{j}, \boldsymbol{p}\right)$ if

- $\operatorname{span}(B)_{B \in \mathcal{B}_{j}}=\mathbb{S}_{p}\left(\mathcal{M}_{j}, \mu_{j}\right)$ and
- $\operatorname{span}(B)_{B \in \mathcal{B}_{j+1}}=\mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$.
- If $\left(\mathcal{M}_{j+1}, \mu_{j+1}, \boldsymbol{p}\right)$ and $\left(\mathcal{M}_{j+1}, \mu_{j+1}, \boldsymbol{p}\right)$ goes hand-in-hand and $\# \mathcal{B}_{j+1}=\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ then the B-splines of \mathcal{B}_{j+1} form a basis for $\mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$.

To ensure linear independence we have to

1. Determine $\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$
2. Determine if \mathcal{B}_{j+1} spans $\mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$
3. Check that $\# \mathcal{B}_{j+1}=\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$

How to measure dimensional of spline space of degree p over a μ-extended box partition (\mathcal{M}, μ).

- Dimension formula developed (Mourrain, Pettersen)

Combinatorial values calculated from topological structure

Homology terms

- In the case of 2-variate LR-splines always zero

Difference in spanning properties between \mathcal{B}_{j} and \mathcal{B}_{j+1}

- The only B -splines in \mathcal{B}_{j+1} that model the discontinuity introduced by γ_{j} are those that have γ_{j} with multiplicity $\mu\left(\gamma_{j}\right)$ as part of the knot structure.
- By restricting these B-splines to γ_{j} we get a set of Bsplines \mathcal{B}_{γ} restricted to γ_{j} with dimension one lower than the dimension of the B -splines of \mathcal{B}_{j+1}.
\square A theorem for general dimensions and degrees states $\operatorname{dim} \operatorname{span}\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}} \leq \operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)-\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j}, \mu_{j}\right)$
\square Further it is stated that \mathcal{B}_{j+1} spans $\mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ if $\operatorname{dim} \operatorname{span}\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)-\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j}, \mu_{j}\right)$

Observations

- To find the dimension of a spline space with many Bsplines is more complex than finding the dimension of a spline space with few B-splines
\square When assessing the B -splines \mathcal{B}_{γ} over γ_{j} we first ensure that the refinement is broken into a sequence of LR Bspline refinements with as low dimension increase as possible.
- As a legal LR-spline refinement always introduces at least one B-spline linearly independent from the pre-existing, a dimension increase by just one will ensure that we go hand-in-hand.
- If the dimension increase is greater than 1 we need to assess the B-splines \mathcal{B}_{γ} over γ_{j}.

Example: C^{2} bi-cubic refinement configurations

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Example: C^{2} bi-cubic refinement configurations

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Example: C^{2} bi-cubic refinement configurations

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T -joint at other end. Dimension increase 1

Example: C^{2} bi-cubic refinement configurations

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T -joint at other end. Dimension increase 1

Example: C^{2} bi-cubic refinement configurations

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T -joint at other end. Dimension increase 1

Example: C^{2} bi-cubic refinement configurations

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T-joint at other end. Dimension increase 1

Interior mesh-rectangle length 4, T-joints at both ends. Dimension increase 1.

Example: C^{2} bi-cubic refinement configurations

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T-joint at other end. Dimension increase 1

Interior mesh-rectangle length 4, T-joints at both ends. Dimension increase 1.

Example: C^{2} bi-cubic refinement configurations

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T -joint at other end. Dimension increase 1

Interior mesh-rectangle length 4, T-joints at both ends. Dimension increase 1.

Mesh-rectangle length 1 gap filling. Dimension increase 4, \mathcal{B}_{γ} spans a polynomial space

Example: C^{2} bi-cubic refinement configurations

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T-joint at other end. Dimension increase 1

Interior mesh-rectangle length 4, T-joints at both ends. Dimension increase 1.

Mesh-rectangle length 1 gap filling. Dimension increase 4,
\mathcal{B}_{γ} spans a polynomial space
Mesh-rectangle length 1 extension of existing meshrectangle to the boundary. Dimension increase $4, \mathcal{B}_{\gamma}$ spans a polynomial space

Increasing interior multiplicity in the bi-cubic case

Interior mesh-rectangle length 4, increase
multiplicity to 2 , lower multiplicity at both ends, dimension increase 1.

Increasing interior multiplicity in the bi-cubic case

Interior mesh-rectangle length 4, increase
multiplicity to 2 , lower multiplicity at both ends, dimension increase 1.

Interior mesh-rectangle length 3, ending in T-joints with orthogonal mesh rectangles, one with multiplicity 1 , and one with multiplicity 2 , dimension increase 1.

Increasing interior multiplicity in the bi-cubic case

Interior mesh-rectangle length 4, increase multiplicity to 2 , lower multiplicity at both ends, dimension increase 1.

Interior mesh-rectangle length 3 , ending in T-joints with orthogonal mesh rectangles, one with multiplicity 1 , and one with multiplicity 2 , dimension increase 1.

Extend existing mesh by length 1 , ending in T-joint with orthogonal mesh rectangles with multiplicity 2 , dimension increase $2, \mathcal{B}_{\gamma}$ spans a polynomial space.

Increasing interior multiplicity in the bi-cubic case

Interior mesh-rectangle length 4, increase multiplicity to 2 , lower multiplicity at both ends, dimension increase 1.

Interior mesh-rectangle length 3 , ending in T-joints with orthogonal mesh rectangles, one with multiplicity 1 , and one with multiplicity 2 , dimension increase 1.

Extend existing mesh by length 1 , ending in T-joint with orthogonal mesh rectangles with multiplicity 2 , dimension increase $2, \mathcal{B}_{\gamma}$ spans a polynomial space.

Interior mesh-rectangle length 3, ending in T-joints with orthogonal mesh rectangles of multiplicity 2 ,, dimension increase 2. To decide if \mathcal{B}_{j+1} is a basis check if dim span $\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=2$.

Possible to increase dimension without refining LR B-splines
 (violation of LR B-spline refinement rule)

Dimension increase 1, one new B-splines (+5, -4)

Possible to increase dimension without refining LR B-splines
 (violation of LR B-spline refinement rule)

Dimension increase 1, one new B-splines ($+5,-4$)
Dimension increase 1, one new B-splines (+5, -4)

Possible to increase dimension without refining LR B-splines
 (violation of LR B-spline refinement rule)

Dimension increase 1, one new B-splines ($+5,-4$)
Dimension increase 1, one new B-splines (+5, -4)
Dimension increase 1, no new B-splines

Possible to increase dimension without refining LR B-splines
 (violation of LR B-spline refinement rule)

Dimension increase 1, one new B-splines ($+5,-4$)
Dimension increase 1, one new B-splines (+5, -4)

Dimension increase 3, three new B-splines (+ 9, -6)

- To decide if \mathcal{B}_{j+1} is a basis check if
dim span $\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=3$.

Possible to increase dimension without refining LR B-splines (violation of LR B-spline refinement rule)

Dimension increase 1, one new B-splines ($+5,-4$)
Dimension increase 1, one new B-splines (+5, -4)
Dimension increase 1, no new B-splines
Dimension increase 3 , three new B-splines (+ 9, -6)

- To decide if \mathcal{B}_{j+1} is a basis check if dim span $\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=3$.
Alternative refinement sequence

Dimension increase 1, one new B-spline ($+5,-4$)
Dimension increase 1, one new B-spline ($+2,-1$)

Possible to increase dimension without refining LR B-splines (violation of LR B-spline refinement rule)

Dimension increase 1, one new B-splines ($+5,-4$)
Dimension increase 1, one new B-splines ($+5,-4$)
Dimension increase 1, no new B-splines
Dimension increase 3 , three new B-splines (+ 9, -6)

- To decide if \mathcal{B}_{j+1} is a basis check if
dim span $\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=3$.
Alternative refinement sequence

Dimension increase 1, one new B-spline (+2, -1)

Possible to increase dimension without refining LR B-splines (violation of LR B-spline refinement rule)

Dimension increase 1, one new B-splines (+5, -4)
Dimension increase 1, one new B-splines (+5, -4)
Dimension increase 1, no new B-splines
Dimension increase 3 , three new B-splines (+ 9, -6)

- To decide if \mathcal{B}_{j+1} is a basis check if dim span $\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=3$.

Alternative refinement sequence

Dimension increase 1, one new B-spline ($+5,-4$)
Dimension increase 1, one new B-spline ($+2,-1$)
Dimension increase 1, one new B-spline (+2, -1)

Possible to increase dimension without refining LR B-splines (violation of LR B-spline refinement rule)

Dimension increase 1, one new B-splines (+5, -4)
Dimension increase 1, one new B-splines (+5, -4)
Dimension increase 1, no new B-splines
Dimension increase 3 , three new B-splines (+ 9, -6)

- To decide if \mathcal{B}_{j+1} is a basis check if dim span $\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=3$.

Alternative refinement sequence

Dimension increase 1, one new B-spline ($+5,-4$)
Dimension increase 1, one new B-spline ($+2,-1$)
Dimension increase 1, one new B-spline ($+2,-1$)
Dimension increase 1, one new B-spline ($+5,-4$)

Possible to increase dimension without refining LR B-splines (violation of LR B-spline refinement rule)

Dimension increase 1, one new B-splines (+5, -4)
Dimension increase 1, one new B-splines (+5, -4)
Dimension increase 1, no new B-splines
Dimension increase 3 , three new B-splines (+ 9, -6)

- To decide if \mathcal{B}_{j+1} is a basis check if dim span $\left(B_{\gamma}\right)_{B \in \mathcal{B}_{\gamma}}=3$.

Alternative refinement sequence

Dimension increase 1, one new B-spline ($+5,-4$)
Dimension increase 1, one new B-spline ($+2,-1$)
Dimension increase 1, one new B-spline ($+2,-1$)
Dimension increase 1, one new B-spline ($+5,-4$)
Dimension increase 1, one new B-spline ($+5,-4$)

What if $\# \mathcal{B}_{j+1}>\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$, e.g., linear dependence.

\square Testing in the bi-cubic case shows that this can happen.

- In examples run in 0.01% of the tested cases.
- What to do?
- Discard refinement and try another refinement near by

■ Eliminate extra B-splines

Ensure linear independence in 2-variate case

- Formula for increase in the dimension 2-variate case $\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}+\gamma, \mu_{\gamma}\right)=\operatorname{dim} \mathbb{S}_{p}(\mathcal{M}, \mu)+\sum_{i=1}^{n} \tilde{\mu}_{i}-p-1-\Delta h_{1}+\Delta h_{0}$
- $\tilde{\mu}_{i}, i=1, . ., n$, multiplicity of intersection points of γ and orthogonal mesh-rectangles, except if $\tilde{\mu}_{i}=p+1, i=1, n$ if γ is extension of existing meshrectangle/multiplicity.
- $\Delta h_{1}, \Delta h_{0}$ always zero for LR-splines
- For dimension increase more than 1 compare dimension of \mathcal{B}_{γ} with above increase to check for hand-in-hand
- Confirm that number of B-splines after refinement corresponds to $\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}+\gamma, \mu_{\gamma}\right)$.
- Can easily be checked for all refinements

Final remarks

■ Linear independence of LR B-splines can be ensured by ensuring that the refinement goes hand-in-hand and check that the number of B-splines corresponds to the spline space.
■ The restriction refined B-splines to the refining mesh-rectangle provides an approach for checking the hand-in-hand property
■ Refinement should be a sequence of refinements with minimal dimension increase
■ In the 2-variate case minimal refinements results in either

- Dimension increase by 1
- Checking the dimension of a univariate polynomial space
- In the cases of multiplicity higher than 1 the dimension of a univariate spline space possibly has to be established, e.g., by knot insertion and checking the rank of the knot insertion matrix.

