Linear independence and Locally Refined B-splines

Tor Dokken SINTEF, Oslo, Norway Paper preprint: <u>http://www.sintef.no/Projectweb/Computational-Geometry/</u>

Spline space over Box-partitions

LR B-splines, T-splines (as originally defined) and Hierarchal B-splines can all be regarded as splines defined over box-partitions.

- Hierarchical B-spline by multi-level mid-element refinement, with possible restriction of refinements to certain regions
- T-splines by what is allowed by the T-spline refinement rules
- LR-splines by a sequence of local refinements starting from a tensor product grid
 - introducing additional B-splines is specified regions as required

() SINTEF

Box-partition

- $\square \Omega \subseteq \mathbb{R}^d \text{ a } d\text{-box in } \mathbb{R}^d.$
- A finite collection \mathcal{E} of *d*-boxes in \mathbb{R}^d is said to be a **box partition** of Ω if
 - *1.* $\beta_1^o \cap \beta_2^o = \emptyset$ for any $\beta_1^o, \beta_2^o \in \mathcal{E}$, where $\beta_1^o \neq \beta_2^o$.
 - 2. $\bigcup_{\beta \in \mathcal{E}} \beta = \Omega$.

μ-extended box-mesh (adding multiplicities)

A multiplicity µ is assigned to each mesh-rectangle
Supports variable knot multiplicity for Locally Refined B-splines.

Refinement by inserting meshrectangles giving a constant split

A μ -extended LR-mesh is a $\mu\text{-extended box-mesh}\ (\mathcal{M},\mu)$ where either

- 1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
- 2. $(\mathcal{M}, \mu) = (\widetilde{\mathcal{M}} + \gamma, \widetilde{\mu}_{\gamma})$ where $(\widetilde{\mathcal{M}}, \widetilde{\mu})$ is a μ -extended LR-mesh and γ is a constant split of $(\widetilde{\mathcal{M}}, \widetilde{\mu})$.

All multiplicities not shown are 1.

() SINTEF

A μ -extended LR-mesh is a $\mu\text{-extended box-mesh}\ (\mathcal{M},\mu)$ where either

- 1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
- 2. $(\mathcal{M}, \mu) = (\widetilde{\mathcal{M}} + \gamma, \widetilde{\mu}_{\gamma})$ where $(\widetilde{\mathcal{M}}, \widetilde{\mu})$ is a μ -extended LR-mesh and γ is a constant split of $(\widetilde{\mathcal{M}}, \widetilde{\mu})$.

All multiplicities not shown are 1.

() SINTEF

A μ -extended LR-mesh is a $\mu\text{-extended box-mesh}\ (\mathcal{M},\mu)$ where either

- 1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
- 2. $(\mathcal{M}, \mu) = (\widetilde{\mathcal{M}} + \gamma, \widetilde{\mu}_{\gamma})$ where $(\widetilde{\mathcal{M}}, \widetilde{\mu})$ is a μ -extended LR-mesh and γ is a constant split of $(\widetilde{\mathcal{M}}, \widetilde{\mu})$.

All multiplicities not shown are 1.

() SINTEF

A μ -extended LR-mesh is a $\mu\text{-extended box-mesh}\ (\mathcal{M},\mu)$ where either

- 1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
- 2. $(\mathcal{M}, \mu) = (\widetilde{\mathcal{M}} + \gamma, \widetilde{\mu}_{\gamma})$ where $(\widetilde{\mathcal{M}}, \widetilde{\mu})$ is a μ -extended LR-mesh and γ is a constant split of $(\widetilde{\mathcal{M}}, \widetilde{\mu})$.

All multiplicities not shown are 1.

() SINTEF

A μ -extended LR-mesh is a $\mu\text{-extended box-mesh}\ (\mathcal{M},\mu)$ where either

- 1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
- 2. $(\mathcal{M}, \mu) = (\widetilde{\mathcal{M}} + \gamma, \widetilde{\mu}_{\gamma})$ where $(\widetilde{\mathcal{M}}, \widetilde{\mu})$ is a μ -extended LR-mesh and γ is a constant split of $(\widetilde{\mathcal{M}}, \widetilde{\mu})$.

All multiplicities not shown are 1.

() SINTEF

A μ -extended LR-mesh is a $\mu\text{-extended box-mesh}\ (\mathcal{M},\mu)$ where either

- 1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
- 2. $(\mathcal{M}, \mu) = (\widetilde{\mathcal{M}} + \gamma, \widetilde{\mu}_{\gamma})$ where $(\widetilde{\mathcal{M}}, \widetilde{\mu})$ is a μ -extended LR-mesh and γ is a constant split of $(\widetilde{\mathcal{M}}, \widetilde{\mu})$.

All multiplicities not shown are 1.

() SINTEF

LR B-spline

Let (M, μ) be an μ -extended LR-mesh in \mathbb{R}^d . A function $B: \mathbb{R}^d \to \mathbb{R}$ is called an LR B-spline of degree p on (\mathcal{M}, μ) if Bis a tensor-product B-spline with minimal support in (\mathcal{M}, μ) .

Splines on a μ -extended LR-mesh

We define a sequence of μ -extended LR-meshes $(\mathcal{M}_1, \mu_1), \dots, (\mathcal{M}_q, \mu_q)$ with corresponding collections of minimal support B-splines $\mathcal{B}_1, \dots, \mathcal{B}_q$.

For j = 1, ..., q - 1 creating $(\mathcal{M}_{j+1}, \mu_{j+1}) = (\mathcal{M}_j + \gamma_j, \mu_{j,\gamma_j})$ from (\mathcal{M}_j, μ_j) involves inserting a mesh-rectangles γ_j that increases the number of B-splines. More specifically:

- γ_j splits (\mathcal{M}_j, μ_j) in a constant split.
- at least on B-spline in \mathcal{B}_j does not have minimal support in $(\mathcal{M}_{j+1}, \mu_{j+1})$.

After inserting γ_j we start a process to generate a collection of minimal support B-splines \mathcal{B}_{j+1} over $(\mathcal{M}_{j+1}, \mu_{j+1})$ from \mathcal{B}_j .

Going from $(\mathcal{M}_{j}, \mu_{j})$ to $(\mathcal{M}_{j+1}, \mu_{j+1})$

Example LR B-spline refinement

Video by PhD fellow Kjetil A. Johannessen, NTNU, Trondheim, Norway.

() SINTEF

Ensuring linear independence

- We say that $(\mathcal{M}_{j+1}, \mu_{j+1}, p)$ goes hand in hand with $(\mathcal{M}_j, \mu_j, p)$ if
 - span (B) $_{B \in \mathcal{B}_{i}} = \mathbb{S}_{p}(\mathcal{M}_{j}, \mu_{j})$ and
 - span (B) $_{B \in \mathcal{B}_{j+1}} = \mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1}).$
- If $(\mathcal{M}_{j+1}, \mu_{j+1}, p)$ and $(\mathcal{M}_{j+1}, \mu_{j+1}, p)$ goes hand-in-hand and $\#\mathcal{B}_{j+1} = \dim \mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$ then the B-splines of \mathcal{B}_{j+1} form a basis for $\mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$.

To ensure linear independence we have to

- 1. Determine dim $\mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$
- 2. Determine if \mathcal{B}_{j+1} spans $\mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$
- 3. Check that $\#\mathcal{B}_{j+1} = \dim \mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$

How to measure dimensional of spline space of degree p over a μ -extended box partition (\mathcal{M}, μ) .

Dimension formula developed (Mourrain, Pettersen)

SINTEF

Difference in spanning properties between \mathcal{B}_j and \mathcal{B}_{j+1}

- The only B-splines in \mathcal{B}_{j+1} that model the discontinuity introduced by γ_j are those that have γ_j with multiplicity $\mu(\gamma_j)$ as part of the knot structure.
- By restricting these B-splines to γ_j we get a set of B-splines \mathcal{B}_{γ} restricted to γ_j with dimension one lower than the dimension of the B-splines of \mathcal{B}_{j+1} .
- A theorem for general dimensions and degrees states dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} \leq \dim \mathbb{S}_{p}(\mathcal{M}_{j+1}, \mu_{j+1}) - \dim \mathbb{S}_{p}(\mathcal{M}_{j}, \mu_{j})$

Further it is stated that \mathcal{B}_{j+1} spans $\mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$ if dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} = \dim \mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1}) - \dim \mathbb{S}_p(\mathcal{M}_j, \mu_j)$

SINTEF

Observations

- To find the dimension of a spline space with many Bsplines is more complex than finding the dimension of a spline space with few B-splines
- When assessing the B-splines \mathcal{B}_{γ} over γ_j we first ensure that the refinement is broken into a sequence of LR B-spline refinements with as low dimension increase as possible.
 - As a legal LR-spline refinement always introduces at least one B-spline linearly independent from the pre-existing, a dimension increase by just one will ensure that we go hand-in-hand.
 - If the dimension increase is greater than 1 we need to assess the B-splines \mathcal{B}_{γ} over γ_j .

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T-joint at other end. Dimension increase 1

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing mesh-rectangle, T-joint at other end. Dimension increase 1

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T-joint at other end. Dimension increase 1

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T-joint at other end. Dimension increase 1

Interior mesh-rectangle length 4, T-joints at both ends. Dimension increase 1.

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing mesh-rectangle, T-joint at other end. Dimension increase 1

Interior mesh-rectangle length 4, T-joints at both ends. Dimension increase 1.

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T-joint at other end. Dimension increase 1

Interior mesh-rectangle length 4, T-joints at both ends. Dimension increase 1.

Mesh-rectangle length 1 gap filling. Dimension increase 4, \mathcal{B}_{γ} spans a polynomial space

Dimension increase of spline space over the box-partition

- All boundary knots mesh-rectangles have multiplicity 4
- All interior mesh-rectangles have multiplicity 1

Mesh-rectangle length 1 starting at the boundary, T-joint at other end. Dimension increase 1

Mesh-rectangle length 1 extending existing meshrectangle, T-joint at other end. Dimension increase 1

Interior mesh-rectangle length 4, T-joints at both ends. Dimension increase 1.

Mesh-rectangle length 1 gap filling. Dimension increase 4, \mathcal{B}_{γ} spans a polynomial space

Mesh-rectangle length 1 extension of existing mesh-rectangle to the boundary. Dimension increase 4, \mathcal{B}_{γ} spans a polynomial space

Interior mesh-rectangle length 4, increase multiplicity to 2, lower multiplicity at both ends, dimension increase 1.

Interior mesh-rectangle length 4, increase multiplicity to 2, lower multiplicity at both ends, dimension increase 1.

Interior mesh-rectangle length 3, ending in T-joints with orthogonal mesh rectangles, one with multiplicity 1, and one with multiplicity 2, dimension increase 1.

Interior mesh-rectangle length 4, increase multiplicity to 2, lower multiplicity at both ends, dimension increase 1.

Interior mesh-rectangle length 3, ending in T-joints with orthogonal mesh rectangles, one with multiplicity 1, and one with multiplicity 2, dimension increase 1.

Extend existing mesh by length 1, ending in T-joint with orthogonal mesh rectangles with multiplicity 2, dimension increase 2, \mathcal{B}_{γ} spans a polynomial space.

Interior mesh-rectangle length 4, increase multiplicity to 2, lower multiplicity at both ends, dimension increase 1.

Interior mesh-rectangle length 3, ending in T-joints with orthogonal mesh rectangles, one with multiplicity 1, and one with multiplicity 2, dimension increase 1.

Extend existing mesh by length 1, ending in T-joint with orthogonal mesh rectangles with multiplicity 2, dimension increase 2, \mathcal{B}_{γ} spans a polynomial space.

Interior mesh-rectangle length 3, ending in T-joints with orthogonal mesh rectangles of multiplicity 2,, dimension increase 2. To decide if \mathcal{B}_{j+1} is a basis check if dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} = 2$.

Dimension increase 1, one new B-splines (+5, -4)

Dimension increase 1, one new B-splines (+5, -4)

Dimension increase 1, one new B-splines (+5, -4)

Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, no new B-splines

Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, one new B-splines (+5, -4)

Dimension increase 3, three new B-splines (+ 9, -6)

• To decide if \mathcal{B}_{j+1} is a basis check if dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} = 3$.

Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, no new B-splines

Dimension increase 3, three new B-splines (+ 9, -6)

• To decide if \mathcal{B}_{j+1} is a basis check if dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} = 3$.

Alternative refinement sequence

Dimension increase 1, one new B-spline (+5, -4) Dimension increase 1, one new B-spline (+2, -1)

Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, no new B-splines

Dimension increase 3, three new B-splines (+ 9, -6)

• To decide if \mathcal{B}_{j+1} is a basis check if dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} = 3$.

Alternative refinement sequence

Dimension increase 1, one new B-spline (+2, -1)

Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, no new B-splines

Dimension increase 3, three new B-splines (+ 9, -6)

• To decide if \mathcal{B}_{j+1} is a basis check if dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} = 3$.

Alternative refinement sequence

Dimension increase 1, one new B-spline (+5, -4) Dimension increase 1, one new B-spline (+2, -1)

Dimension increase 1, one new B-spline (+2, -1)

Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, no new B-splines

Dimension increase 3, three new B-splines (+ 9, -6)

• To decide if \mathcal{B}_{j+1} is a basis check if dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} = 3$.

Alternative refinement sequence

Dimension increase 1, one new B-spline (+5, -4) Dimension increase 1, one new B-spline (+2, -1) Dimension increase 1, one new B-spline (+2, -1)

Dimension increase 1, one new B-spline (+5, -4)

Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, one new B-splines (+5, -4) Dimension increase 1, no new B-splines

Dimension increase 3, three new B-splines (+ 9, -6)

• To decide if \mathcal{B}_{j+1} is a basis check if dim span $(B_{\gamma})_{B \in \mathcal{B}_{\gamma}} = 3$.

Alternative refinement sequence

Dimension increase 1, one new B-spline (+5, -4) Dimension increase 1, one new B-spline (+2, -1) Dimension increase 1, one new B-spline (+2, -1) Dimension increase 1, one new B-spline (+5, -4) Dimension increase 1, one new B-spline (+5, -4)

What if $\#\mathcal{B}_{j+1} > \dim \mathbb{S}_p(\mathcal{M}_{j+1}, \mu_{j+1})$, e.g., linear dependence.

- Testing in the bi-cubic case shows that this can happen.
 - In examples run in 0.01% of the tested cases.
- What to do?
 - Discard refinement and try another refinement near by
 - Eliminate extra B-splines

Ensure linear independence in 2-variate case

- Formula for increase in the dimension 2-variate case $\dim \mathbb{S}_p(\mathcal{M} + \gamma, \mu_{\gamma}) = \dim \mathbb{S}_p(\mathcal{M}, \mu) + \sum_{i=1}^n \tilde{\mu}_i - p - 1 - \Delta h_1 + \Delta h_0$
 - $\tilde{\mu}_i$, i = 1, ..., n, multiplicity of intersection points of γ and orthogonal mesh-rectangles, except if $\tilde{\mu}_i$, = p + 1, i = 1, n if γ is extension of existing meshrectangle/multiplicity.
 - Δh_1 , Δh_0 always zero for LR-splines
- For dimension increase more than 1 compare dimension of \mathcal{B}_{γ} with above increase to check for hand-in-hand
- Confirm that number of B-splines after refinement corresponds to $\dim \mathbb{S}_p(\mathcal{M} + \gamma, \mu_{\gamma}).$
- Can easily be checked for all refinements

SINTEF

Final remarks

- Linear independence of LR B-splines can be ensured by ensuring that the refinement goes hand-in-hand and check that the number of B-splines corresponds to the spline space.
 - The restriction refined B-splines to the refining mesh-rectangle provides an approach for checking the hand-in-hand property
 - Refinement should be a sequence of refinements with minimal dimension increase
 - In the 2-variate case minimal refinements results in either
 - Dimension increase by 1
 - Checking the dimension of a univariate polynomial space
 - In the cases of multiplicity higher than 1 the dimension of a univariate spline space possibly has to be established, e.g., by knot insertion and checking the rank of the knot insertion matrix.