Locally Refined B-splines and Linear Independence

Tor Dokken, Tom Lyche, Kjell Fredrik Pettersen

Technologies for Local Refined Splines

	T-splines	Truncated Hierar- chical B-splines*	LR B-splines	PHT-splines
Approach	Algorithmic	Spline space	Spline space	Spine space
Generalizatio n of	NonUniform B-splines	Uniform B-splines	NonUniform B- splines	Splines over T-mesh
Minimal refinement	One knotline segment	Split all knot intervals of one B-spline	One knotline segment	One knotline segment
Partition of unity	Rational Scaling	Truncated** B- splines	Scaled B-splines	Tailored basis
Linear independence	When analysis suitable	Yes	When hand-in-hand or successful overload elimination	Tailored basis
Specification of refinement	Insertion of vertex in vertex T-grid	Refinement levels and regions in parameter domain	Knotline segment in box-mesh projected on surface, as T- splines or Hierachi- cal B-splines	Mesh rectangle in T-mesh

*Kraft (1997) Hierarchical B-splines

**Giannelli (2012) – Truncated Hierarchical B-splines

Knotline T-mesh projected on to LR B-spline represented surface

Illustration by: Odd Andersen, SINTEF

Box-partitions

Box-partitions - Rectangular subdivision of regular domain d-box \mathbb{R}^d

$$\Omega \subseteq \mathbb{R}^d
\Omega = [a_1, b_1] \times \cdots \times [a_d, b_d]
a_i < b_i, 1 \le i \le d$$

$$\Omega \subseteq \mathbb{R}^2$$

Subdivision of Ω into smaller d -boxes

$$\mathcal{E} = \{\beta_1, \dots, \beta_1\}$$

$$\beta_1 \cup \beta_2 \cup \dots \cup \beta_n = \Omega$$

$$\beta_i^o \cap \beta_j^o = \emptyset, i \neq j$$

$$\boldsymbol{\mathcal{E}} = \{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6\}$$

Important boxes

- If $\dim \beta = d$ then β is called an **element**.
- If dim $\beta = d 1$ there exists exactly one k such that $J_k = [a]$ is trivial. Then β is called a **mesh-rectangle**, a k-mesh-rectangle or a (k, a)-mesh-rectangle

Mesh-rectangles

Illustration by: Kjell Fredrik Pettersen, SINTEF

μ-extended box-mesh (adding multiplicities)

- \blacksquare A multiplicity μ is assigned to each mesh-rectangle
- Supports variable knot multiplicity for Locally Refined Bsplines, and local lower order continuity across meshrectangles.
- Compatible with nonuniform univariate B-splines

Polynomials of component degree

On each element the spline is a polynomial.

We define polynomials of component degree at most

$$p_k, k = 1, ..., d$$
 by:

$$\Pi_p^d = \left\{ f : \mathbb{R}^d \to \mathbb{R} : f(x) = \sum_{\mathbf{0} \le \mathbf{i} \le \mathbf{p}} c_i x^{\mathbf{i}}, c_i \text{ in } \mathbb{R} \text{ for all } \mathbf{i} \right\}.$$

$$\mathbf{p} = (p_1, ..., p_d)$$
$$\mathbf{i} = (i_1, ..., i_d)$$

Polynomial pieces

Continuity across mesh-rectangles

Given a function $f: [a, b] \to \mathbb{R}$, and let $\gamma \in \mathcal{F}_{d-1,k}(\mathcal{E})$ be any k-mesh-rectangle in [a, b] for some $1 \le k \le d$.

We say that $f \in C^r(\gamma)$ if the partial derivatives $\partial^j f(x)/\partial x_k^j$ exists and are continuous for $j=0,1,\ldots,r$ and

all $x \in \gamma$.

 $\partial^{j} f(x) / \partial x_{1}^{j}$ exists and are continuous for j = 0,1,...,r $\frac{\partial^j f(x)}{\partial x_2^j}$ exists and are continuous for $j = 0, 1, \dots, r$

Piecewise polynomial space

We define the piecewise polynomial space

$$\mathbb{P}_{\boldsymbol{p}}(\boldsymbol{\mathcal{E}}) = \{ f : [\boldsymbol{a}, \boldsymbol{b}] \to \mathbb{R} : f|_{\beta} \in \Pi_{\boldsymbol{p}}^d, \beta \in \tilde{\mathcal{E}} \},$$

where \mathcal{E} is obtained from \mathcal{E} using half-open intervals as for univate B-splines.

Spline space

Continuity across k-mesh-rectangle γ

We define the spline space

$$\mathbb{S}_{p}(\mathcal{M},\mu) = \{ f \in \Pi_{p}^{d} \left(\mathcal{E}(\mathcal{M}) \right) : f \in C^{p_{k}-\mu(\gamma)}(\gamma), \}$$

 $\forall \gamma \in \mathcal{F}_{d-1,k}\big(\mathcal{E}(\mathcal{M})\big), k=1,\ldots,d\big\}$

All k-mesh-rectangles

Specify multiplicity, e.g., continuity across mesh-rectangle

How to measure dimensional of spline space of degree p over a μ -extended box partition (\mathcal{M}, μ) .

■ Dimension formula developed (Mourrain, Pettersen)

$$\dim \mathbb{S}_{\boldsymbol{p}}(\mathcal{M},\boldsymbol{\mu}) = \underbrace{\sum_{\ell=0}^{d} (-1)^{d-\ell} \left(\sum_{\beta \in \mathcal{F}_{\ell}(\mathcal{M})} \prod_{k=1}^{d} \left(p_k - \mu_k(\beta) + 1 \right) \right)}_{\beta \in \mathcal{F}_{\ell}(\mathcal{M})} + 1 \underbrace{\sum_{q=0}^{d-1} (-1)^{d-q} \dim H_q(\widetilde{\mathfrak{S}}(\mathcal{N}))}_{\text{all l-boxes of all dimensions}}$$

Combinatorial values calculated from topological structure

Homology terms

In the case of 2-variate
 LR B-splines always zero

From talk by: Kjell Fredrik Pettersen, SINTEF

Dimension influenced by

mesh-rectangle

multiplicity

Refinement by inserting meshrectangles giving a constant split

μ-extended LR-mesh

A μ -extended LR-mesh is a μ -extended box-mesh (\mathcal{M}, μ) where either

- 1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
- 2. $(\mathcal{M}, \mu) = (\widetilde{\mathcal{M}} + \gamma, \widetilde{\mu}_{\gamma})$ where $(\widetilde{\mathcal{M}}, \widetilde{\mu})$ is a μ -extended LR-mesh and γ is a constant split of $(\widetilde{\mathcal{M}}, \widetilde{\mu})$.

All multiplicities not shown are 1.

LR B-spline

Let (M, μ) be a μ -extended LR-mesh in \mathbb{R}^d . A function $B: \mathbb{R}^d \to \mathbb{R}$ is called an LR B-spline of degree \boldsymbol{p} on (\mathcal{M}, μ) if B is a tensor-product B-spline with minimal support in (\mathcal{M}, μ) .

Splines on a μ -extended LR-mesh

We define as sequence of μ -extended LR-meshes $(\mathcal{M}_1, \mu_1), \dots, (\mathcal{M}_q, \mu_q)$ with corresponding collections of minimal support B-splines $\mathcal{B}_1, \dots, \mathcal{B}_q$.

$$(\mathcal{M}_1, \mu_1), \quad (\mathcal{M}_2, \mu_2), \quad \dots \quad (\mathcal{M}_j, \mu_j), \quad (\mathcal{M}_{j+1}, \mu_{j+1}) \quad \dots \quad (\mathcal{M}_q, \mu_q)$$
 $\mathcal{B}_1, \quad \mathcal{B}_2, \quad \dots \quad \mathcal{B}_j, \quad \mathcal{B}_{j+1}, \quad \dots \quad \mathcal{B}_q$

Creating $(\mathcal{M}_{j+1}, \mu_{j+1})$ from $(\mathcal{M}_{j}, \mu_{j})$

Insert a mesh-rectangles γ_j that increases the number of B-splines. More specifically:

 $> \gamma_j$ splits (\mathcal{M}_j, μ_j) in a constant split.

at least on B-spline in \mathcal{B}_i does not have minimal support in

 $(\mathcal{M}_{j+1}, \mu_{j+1}).$

B-spline from \mathcal{B}_j that has to be split to generate \mathcal{B}_{j+1}

After inserting γ_j we start a process to generate a collection of minimal support B-splines \mathcal{B}_{j+1} over $(\mathcal{M}_{j+1}, \mu_{j+1})$ from \mathcal{B}_j .

LR B-splines and partition of unity

- The LR B-spline refinement starts from a partition of unity tensor product B-spline basis.
- By accumulating the weights α_1 and α_2 as scaling factors for the LR B-splines, partition of unity is maintained throughout the refinement for the scaled collection of tensor product B-splines
- The partition of unity properties gives the coefficients of LR B-splines the same geometric interpretation as Bsplines and T-splines.
 - The spatial interrelation of the coefficients is more intricate than for T-splines as the refinements allowed are more general.
 - This is, however, no problem as in general algorithms calculate the coefficients both in FEA and CAD.

Example LR B-spline refinement

Video by Kjetil A. Johannessen, NTNU, Trondheim, Norway.

Frist approach for ensuring linear independence

- 1. Determine dim $\mathbb{S}_{p}(\mathcal{M}_{j+1}, \mu_{j+1})$
- 2. Determine if \mathcal{B}_{j+1} spans $\mathbb{S}_{p}(\mathcal{M}_{j+1}, \mu_{j+1})$
- 3. Check that $\#\mathcal{B}_{j+1} = \dim \mathbb{S}_{p}(\mathcal{M}_{j+1}, \mu_{j+1})$

The approach is implemented and working well, singles out the linear depended situations efficiently.

Second Approach for Ensuring Linear Independence

The refinement starts from a tensor product B-spline space with $(p_1 + 1)(p_2 + 1) \dots (p_d + 1)$ B-splines covering an element spanning the polynomial space of degree (p_1, p_2, \dots, p_d) over the element.

- A refinement cannot reduce the polynomial space spanned over an element.
- An extra B-spline in a linear dependency relation can be removed without changing spanning properties over its elements
 - Before the removal of a B-spline there must consequently be more than $(p_1 + 1)(p_2 + 1) \dots (p_d + 1)$ B-splines covering all elements of the removed B-spline.

Overloaded elements and B-splines

- We call an element overloaded if there are more than $(p_1 + 1)(p_2 + 1) \dots (p_d + 1)$ B-splines covering the element.
- We call a B-spline overloaded if all its elements are overloaded. We denote the collection of overloaded Bsplines B^O.

Illustration by: Kjetil A. Johannessen, SINTEF

The support of overloaded B-splines colored grey.

Observations

- If there is no overloaded B-spline in the μ -extended mesh then the B-splines are locally (and globally) linearly independent
 - All overloaded elements not part of an overloaded B-spline can be disregarded
- Only overloaded B-splines can occur in linear dependency relations
- A linear dependency relation has to include at least two overloaded B-splines.
 - Elements with only one overloaded B-spline can not be part of linear dependency relation. Thus overloaded B-spline having such an element cannot be part of linear dependency relation.
 - Given a linear dependency relation between the B-splines in a collection of overloaded B-splines $\mathcal{B}^{\mathcal{O}}$. Let $\mathcal{E}^{\mathcal{O}}$ be all the elements of the B-splines in $\mathcal{B}^{\mathcal{O}}$. For every element $e \in \mathcal{E}^{\mathcal{O}}$ there are at least two B-splines from $\mathcal{B}^{\mathcal{O}}$ containing e.

Algorithm

- 1. From the collection of LR B-splines \mathcal{B} create a collection of overloaded B-splines $\mathcal{B}^{\mathcal{O}}$.
- 2. Let $\mathcal{E}^{\mathcal{O}}$ be the elements of the B-splines in $\mathcal{B}^{\mathcal{O}}$. For all elements in $\mathcal{E}^{\mathcal{O}}$ identify elements that is covered by only one B-spline from $\mathcal{B}^{\mathcal{O}}$, and collect these B-splines in the collection $\mathcal{B}_1^{\mathcal{O}}$.
- 3. Remove the B-splines in $\mathcal{B}_1^{\mathcal{O}}$ from $\mathcal{B}^{\mathcal{O}} : \mathcal{B}^{\mathcal{O}} := \mathcal{B}^{\mathcal{O}} \setminus \mathcal{B}_1^{\mathcal{O}}$
 - If $\mathcal{B}^{\mathcal{O}} \equiv \emptyset$ then the B-splines in \mathcal{B} are linearly independent, exit, else
 - If $\mathcal{B}_1^{\mathcal{O}} \equiv \emptyset$ then then the B-splines in $\mathcal{B}^{\mathcal{O}}$ may be part of a linear dependency relation, exit, else
 - Try to reduce more, go to 2.

Note: Can both be run in "index space" and with meshrectangles with multiplicity.

Example reduction algorithm for overloaded B-splines.

An introduction study

Overloaded B-splines

Example, Continued.

Example, Continued.

All B-splines remaining some elements that are overloaded only once. Linear dependency not possible.

No overloaded B-splines remaining. Linear dependency not possible.

White: Element covered by no B-spline in $\mathcal{B}^{\mathcal{O}}$ Illustration by: Kjetil A. Johannessen, NTNU

Example, Reduction not successful. Possible linear dependence.

Alternative uses of the reduction algorithm

- Use overload information to direct refinements
- Prohibit the refinements if $\mathcal{B}^{\mathcal{O}} \neq \emptyset$ after reduction algorithm.
- Check incremental refinement, and perform corrective refinements. In general we expect that the number of remaining overload B-splines is small.
- Check a B-spline collection over an μ -extended mesh for possible linear dependency relations (and perform corrective refinements).

Concluding remarks

- T-splines and LR B-splines are two related approaches to Local Refinement of B-splines
 - LR B-splines refine directly in the μ -extended box-partition
 - T-splines specifies the refinement though the T-spline vertex mesh thus limiting refinement opportunities
- Hierarchical B-splines can as far as we understand be regarded as a special instance of LR B-splines
 - The sets Ω_l , l=1, ... can be regarded as the sum of the supports of the B-splines being subdivided at a given level
 - The scaled B-splines of LR B-splines can be used as an alternative approach for achieving partition of unity for hierarchical B-splines.

LR B-splines refinement to represent the spline space of truncated hierarchical B-splines

Will always produce linearly independent B-splines

