Locally Refined B-splines and Linear Independence

Tor Dokken, Tom Lyche, Kjell Fredrik Pettersen

Technologies for Local Refined Splines

	T-splines	Truncated Hierar- chical B-splines *	LR B-splines	PHT-splines
Approach	Algorithmic	Spline space	Spline space	Spine space
Generalizatio n of	NonUniform B-splines	Uniform B-splines	NonUniform B- splines	Splines over T-mesh
Minimal refinement	One knotline segment	Split all knot intervals of one B- spline	One knotline segment	One knotline segment
Partition of unity	Rational Scaling	Truncated* B- splines	Scaled B-splines	Tailored basis
Linear independence	When analysis suitable	Yes	When hand-in-hand or successful overload elimination	Tailored basis
Specification of refinement	Insertion of vertex in vertex T-grid	Refinement levels and regions in parameter domain	Knotline segment in box-mesh projected on surface, as T- splines or Hierachi- cal B-splines	Mesh rectangle in T-mesh

*Kraft (1997) Hierarchical B-splines
**Giannelli (2012) - Truncated Hierarchical B-splines
SINTEF

Knotline T-mesh projected on to LR B-spline represented surface

Illustration by: Odd Andersen, SINTEF

Box-partitions

- Box-partitions - Rectangular subdivision of regular domain d-box \mathbb{R}^{d}

$$
\begin{aligned}
& \Omega \subseteq \mathbb{R}^{d} \\
& \Omega=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right] \\
& a_{i}<b_{i}, 1 \leq i \leq d
\end{aligned}
$$

- Subdivision of Ω into smaller d-boxes

$$
\begin{aligned}
& \mathcal{E}=\left\{\beta_{1}, \ldots, \beta_{1}\right\} \\
& \beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{n}=\Omega \\
& \beta_{i}^{o} \cap \beta_{j}^{o}=\emptyset, i \neq j
\end{aligned}
$$

$$
\mathcal{E}=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}\right\}
$$

Important boxes

- If $\operatorname{dim} \beta=d$ then β is called an element.
- If $\operatorname{dim} \beta=d-1$ there exists exactly one k such that $J_{k}=[a]$ is trivial. Then β is called a mesh-rectangle, a k-mesh-rectangle or a (k, a)-mesh-rectangle

Mesh-rectangles

Illustration by: Kjell Fredrik Pettersen, SINTEF

μ-extended box-mesh (adding multiplicities)

- A multiplicity $\boldsymbol{\mu}$ is assigned to each mesh-rectangle
- Supports variable knot multiplicity for Locally Refined Bsplines, and local lower order continuity across meshrectangles.
- Compatible with nonuniform univariate B-splines

Polynomials of component degree

On each element the spline is a polynomial.
We define polynomials of component degree at most $p_{k}, k=1, \ldots, d$ by:

$$
\begin{aligned}
& \Pi_{\boldsymbol{p}}^{d}=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}: f(\boldsymbol{x})=\sum_{\mathbf{0} \leq \boldsymbol{i} \leq p_{<}} c_{i} x^{\boldsymbol{i}}, c_{i} \text { in } \mathbb{R} \text { for all } \boldsymbol{i}\right\} \\
& \hline
\end{aligned}
$$

Continuity across mesh-rectangles

Given a function $f:[\boldsymbol{a}, \boldsymbol{b}] \rightarrow \mathbb{R}$, and let $\gamma \in \mathcal{F}_{d-1, k}(\mathcal{E})$ be any k-mesh-rectangle in $[\boldsymbol{a}, \boldsymbol{b}]$ for some $1 \leq k \leq d$.

We say that $f \in C^{r}(\gamma)$ if the partial derivatives $\partial^{j} f(x) / \partial x_{k}^{j}$ exists and are continuous for $j=0,1, \ldots, r$ and all $\boldsymbol{x} \in \gamma$.
$\partial^{j} f(x) / \partial x_{1}^{j}$
exists and are
continuous for
$j=0,1, \ldots ., r$

$$
\begin{aligned}
& \partial^{j} f(x) / \partial x_{2}^{j} \\
& \text { exists and are } \\
& \text { continuous for } \\
& j=0,1, \ldots, r \\
& \hline
\end{aligned}
$$

Piecewise polynomial space

We define the piecewise polynomial space

$$
\mathbb{P}_{\boldsymbol{p}}(\boldsymbol{\mathcal { E }})=\left\{f:[\boldsymbol{a}, \boldsymbol{b}] \rightarrow \mathbb{R}:\left.f\right|_{\beta} \in \Pi_{\boldsymbol{p}}^{d}, \beta \in \tilde{\mathcal{E}}\right\}
$$

where \mathcal{E} is obtained from $\mathcal{\varepsilon}$ using half-open intervals as for univate B -splines.

Spline space

How to measure dimensional of spline space of degree p over a μ-extended box partition (\mathcal{M}, μ).

- Dimension formula developed (Mourrain, Pettersen)

Refinement by inserting meshrectangles giving a constant split

Constant split

μ-extended LR-mesh

A μ-extended LR-mesh is a μ-extended box-mesh (\mathcal{M}, μ) where either

1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
2. $(\mathcal{M}, \mu)=\left(\tilde{\mathcal{M}}+\gamma, \tilde{\mu}_{\gamma}\right)$ where $(\tilde{\mathcal{M}}, \tilde{\mu})$ is a μ-extended LRmesh and γ is a constant split of $(\tilde{\mathcal{M}}, \tilde{\mu})$.

All multiplicities not shown are 1.

LR B-spline

Let (M, μ) be a μ-extended LR-mesh in \mathbb{R}^{d}. A function $B: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called an LR B-spline of degree \boldsymbol{p} on (\mathcal{M}, μ) if B is a tensor-product B -spline with minimal support in (\mathcal{M}, μ).

Splines on a μ-extended LR-mesh

We define as sequence of $\boldsymbol{\mu}$-extended LR-meshes $\left(\mathcal{M}_{1}, \mu_{1}\right), \ldots,\left(\mathcal{M}_{q}, \mu_{q}\right)$ with corresponding collections of minimal support B-splines $\mathcal{B}_{1}, \ldots, \mathcal{B}_{q}$.

$$
\begin{array}{ccccccc}
\left(\mathcal{M}_{1}, \mu_{1}\right), & \left(\mathcal{M}_{2}, \mu_{2}\right), & \ldots & \left(\mathcal{M}_{j}, \mu_{j}\right), & \left(\mathcal{M}_{j+1}, \mu_{j+1}\right) & \ldots & \left(\mathcal{M}_{q}, \mu_{q}\right) \\
\mathcal{B}_{1}, & \mathcal{B}_{2}, & \ldots & \mathcal{B}_{j}, & \mathcal{B}_{j+1}, & \ldots & \mathcal{B}_{q}
\end{array}
$$

Creating $\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ from $\left(\mathcal{M}_{j}, \mu_{j}\right)$

Insert a mesh-rectangles γ_{j} that increases the number of B-splines. More specifically:
γ_{j} splits $\left(\mathcal{M}_{j}, \mu_{j}\right)$ in a constant split.

- at least on B-spline in \mathcal{B}_{j} does not have minimal support in $\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$.

B-spline from \mathcal{B}_{j} that has to be split to generate \mathcal{B}_{j+1}

$\left(\mathcal{M}_{j}, \mu_{j}\right)$

$\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$

- After inserting γ_{j} we start a process to generate a collection of minimal support B-splines \mathcal{B}_{j+1} over $\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$ from \mathcal{B}_{j}.

LR B-splines and partition of unity

- The LR B-spline refinement starts from a partition of unity tensor product B -spline basis.
- By accumulating the weights α_{1} and α_{2} as scaling factors for the LR B-splines, partition of unity is maintained throughout the refinement for the scaled collection of tensor product B-splines
- The partition of unity properties gives the coefficients of LR B-splines the same geometric interpretation as Bsplines and T-splines.
■ The spatial interrelation of the coefficients is more intricate than for T-splines as the refinements allowed are more general.
- This is, however, no problem as in general algorithms calculate the coefficients both in FEA and CAD.

Example LR B-spline refinement

Video by Kjetil A. Johannessen, NTNU, Trondheim, Norway.

Frist approach for ensuring linear independence

1. Determine $\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$
2. Determine if \mathcal{B}_{j+1} spans $\mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$
3. Check that $\# \mathcal{B}_{j+1}=\operatorname{dim} \mathbb{S}_{p}\left(\mathcal{M}_{j+1}, \mu_{j+1}\right)$

The approach is implemented and working well, singles out the linear depended situations efficiently.

Second Approach for Ensuring Linear Independence

The refinement starts from a tensor product B-spline space with $\left(p_{1}+1\right)\left(p_{2}+1\right) \ldots\left(p_{d}+1\right)$ B-splines covering an element spanning the polynomial space of degree ($p_{1}, p_{2}, \ldots, p_{d}$) over the element.
\square A refinement cannot reduce the polynomial space spanned over an element.
■ An extra B-spline in a linear dependency relation can be removed without changing spanning properties over its elements

- Before the removal of a B-spline there must consequently be more than $\left(p_{1}+1\right)\left(p_{2}+1\right) \ldots\left(p_{d}+1\right) \mathrm{B}$-splines covering all elements of the removed B -spline.

Overloaded elements and B-splines

- We call an element overloaded if there are more than
$\left(p_{1}+1\right)\left(p_{2}+1\right) \ldots\left(p_{d}+1\right)$ Bsplines covering the element.
- We call a B-spline overloaded if all its elements are overloaded. We denote the collection of overloaded Bsplines $\mathcal{B}^{\mathcal{O}}$.

Illustration by:
Kjetil A. Johannessen, SINTEF

The support of overloaded Bsplines colored grey.

Observations

- If there is no overloaded B-spline in the μ-extended mesh then the B-splines are locally (and globally) linearly independent
- All overloaded elements not part of an overloaded B-spline can be disregarded
- Only overloaded B-splines can occur in linear dependency relations
- A linear dependency relation has to include at least two overloaded B-splines.
- Elements with only one overloaded B-spline can not be part of linear dependency relation. Thus overloaded B-spline having such an element cannot be part of linear dependency relation.
- Given a linear dependency relation between the B -splines in a collection of overloaded B -splines $\mathcal{B}^{\mathcal{O}}$. Let $\mathcal{E}^{\mathcal{O}}$ be all the elements of the B -splines in $\mathcal{B}^{\mathcal{O}}$. For every element $e \in \mathcal{E}^{\mathcal{O}}$ there are at least two B -splines from $\mathcal{B}^{\mathcal{O}}$ containing e.

Algorithm

1. From the collection of LR B-splines \mathcal{B} create a collection of overloaded B-splines $\mathcal{B}^{\mathcal{0}}$.
2. Let $\mathcal{E}^{\mathcal{O}}$ be the elements of the B -splines in $\mathcal{B}^{\mathcal{O}}$. For all elements in $\varepsilon^{\mathcal{O}}$ identify elements that is covered by only one B-spline from $\mathcal{B}^{\mathcal{O}}$, and collect these B-splines in the collection \mathcal{B}_{1}^{0}.
3. Remove the B-splines in $\mathcal{B}_{1}^{\mathcal{O}}$ from $\mathcal{B}^{\mathcal{O}}: \mathcal{B}^{\mathcal{O}}:=\mathcal{B}^{\mathcal{O}} \backslash \mathcal{B}_{1}^{\mathcal{O}}$

- If $\mathcal{B}^{\mathcal{O}} \equiv \varnothing$ then the B-splines in \mathcal{B} are linearly independent, exit, else
- If $\mathcal{B}_{1}^{\mathcal{O}} \equiv \emptyset$ then then the B -splines in $\mathcal{B}^{\mathcal{O}}$ may be part of a linear dependency relation, exit, else
- Try to reduce more, go to 2.

Note: Can both be run in "index space" and with meshrectangles with multiplicity.

Example reduction algorithm for overloaded B-splines.

An introduction study Overloaded B-splines

Example, Continued.

Example, Continued.

All B-splines remaining some elements that are overloaded only once. Linear dependency not possible.

No overloaded B-splines remaining. Linear dependency not possible.

An introduction study Overloaded B-splines

Curves and Surfaces, June 28 - July 3, 2012 - Oslo, Norway

Example, Reduction not successful. Possible linear dependence.

Area with probable linear dependenceIllustration by: Kjetil A. Johannessen, NTNU

Fix by refining large Bsplines in red region

An introduction study
Curves and Surfaces, June 28 - July 3, 2012 - Oslo, Norway

Alternative uses of the reduction algorithm

■ Use overload information to direct refinements

- Prohibit the refinements if $\mathcal{B}^{\mathcal{O}} \neq \emptyset$ after reduction algorithm.
- Check incremental refinement, and perform corrective refinements. In general we expect that the number of remaining overload B -splines is small.
- Check a B-spline collection over an μ-extended mesh for possible linear dependency relations (and perform corrective refinements).

Concluding remarks

- T-splines and LR B-splines are two related approaches to Local Refinement of B-splines
- LR B-splines refine directly in the μ-extended box-partition
- T-splines specifies the refinement though the T-spline vertex mesh thus limiting refinement opportunities
- Hierarchical B-splines can as far as we understand be regarded as a special instance of LR B-splines
- The sets $\Omega_{l}, l=1, \ldots$ can be regarded as the sum of the supports of the B-splines being subdivided at a given level
- The scaled B-splines of LR B-splines can be used as an alternative approach for achieving partition of unity for hierarchical B-splines.

LR B-splines refinement to represent the spline space of truncated hierarchical B-splines

- Will always produce linearly independent B -splines

