Polynomial Splines over locally refined box-partitions

Tor Dokken*, Tom Lyche⁺, Kjell Fredrik Pettersen* *SINTEF and ⁺University of Oslo

The work is partly funded by the European Union through

- The TERRIFIC project (EU Contract 284981) <u>www.terrific-project.eu</u>
- The IQmulus project (EU Contract 318787) <u>www.iqmulus.eu</u>

Structure of talk

- Polynomial Splines over locally refined box-partitions
- LR-mesh, constant split and LR B-spline
- The relation between T-splines and Locally Refined Bsplines
- Peeling algorithm for linear independence (both valid for LR B-splines and Semi-Standard T-splines)

Box-partitions

Box-partitions - Rectangular subdivision of regular domain d-box \mathbb{R}^d

 $\Omega \subseteq \mathbb{R}^d$ $\Omega = [a_1, b_1] \times \dots \times [a_d, b_d]$ $a_i < b_i, \ 1 \le i \le d$

 $\Omega\subseteq \mathbb{R}^2$

Subdivision of Ω into smaller d -boxes

$$\mathcal{E} = \{\beta_1, \dots, \beta_1\}$$

$$\beta_1 \cup \beta_2 \cup \dots \cup \beta_n = \Omega$$

$$\beta_i^o \cap \beta_j^o = \emptyset, \ i \neq j$$

$$\begin{array}{c|c} \beta_1 & \beta_2 \\ \hline \beta_3 & \beta_4 & \beta_6 \\ \hline \beta_5 & \end{array}$$

$$\boldsymbol{\mathcal{E}} = \{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6\}$$

Why introduce Box-partitions?

The different approaches to local refinement of splines over regular grids seem all be related to Box-partitions.

- The structure of Bezier elements of T-splines over a rectangular domain is a box-partition
- Locally Refined B-splines (LR B-splines) are defined over a box partition with multiplicities
- The knot lines of Hierarchical B-splines define a boxpartition
- PHT-splines are defined over a box-partition

Local refinement in any of the approaches above lead to refinement of the Box-partition

Important boxes

- If dim $\beta = d$ then β is called an **element**.
- If dim $\beta = d 1$ then β is called a **mesh-rectangle**, a *k*-**mesh-rectangle**

Mesh-rectangles

Illustration by: Kjell Fredrik Pettersen, SINTEF

Polynomials of component degree

On each element of the Box-partition the spline is a polynomial.

We define polynomials of component degree at most p_k , k = 1, ..., d by:

() SINTEF

Piecewise polynomial space

We define the piecewise polynomial space $\mathbb{P}_{p}(\mathcal{E}) = \{f : [a, b] \to \mathbb{R} : f|_{\beta} \in \Pi_{p}^{d}, \beta \in \tilde{\mathcal{E}}\},\$

where \mathcal{E} is obtained from \mathcal{E} using half-open intervals as for univate B-splines.

Continuity across mesh-rectangles

Given a function $f: [a, b] \to \mathbb{R}$, and let $\gamma \in \mathcal{F}_{d-1,k}(\mathcal{E})$ be any *k*-mesh-rectangle in [a, b] for some $1 \le k \le d$.

We say that $f \in C^r(\gamma)$ if the partial derivatives $\frac{\partial^j f(x)}{\partial x_k^j}$ exists and are continuous for j = 0, 1, ..., r and all $x \in \gamma$.

μ-extended box-mesh (multiplicities added to model continuity)

- A multiplicity μ is assigned to each mesh-rectangle
- Supports variable knot multiplicity for Locally Refined Bsplines, and local lower order continuity across meshrectangles.
- Compatible with nonuniform univariate B-splines

Refinement by inserting meshrectangles giving a constant split

μ-extended LR-mesh

A μ -extended LR-mesh is a $\mu\text{-extended box-mesh}\ (\mathcal{M},\mu)$ where either

- 1. (\mathcal{M}, μ) is a tensor-mesh with knot multiplicities or
- 2. $(\mathcal{M}, \mu) = (\widetilde{\mathcal{M}} + \gamma, \widetilde{\mu}_{\gamma})$ where $(\widetilde{\mathcal{M}}, \widetilde{\mu})$ is a μ -extended LR-mesh and γ is a constant split of $(\widetilde{\mathcal{M}}, \widetilde{\mu})$.

All multiplicities not shown are 1.

LR B-spline

Let (M, μ) be a μ -extended LR-mesh in \mathbb{R}^d . A function $B: \mathbb{R}^d \to \mathbb{R}$ is called an LR B-spline of degree p on (\mathcal{M}, μ) if Bis a tensor-product B-spline with minimal support in (\mathcal{M}, μ) .

Splines on a μ -extended LR-mesh

We define as sequence of μ -extended LR-meshes $(\mathcal{M}_1, \mu_1), \dots, (\mathcal{M}_q, \mu_q)$ with corresponding collections of minimal support B-splines $\mathcal{B}_1, \dots, \mathcal{B}_q$.

$$(\mathcal{M}_1, \mu_1), \quad (\mathcal{M}_2, \mu_2), \quad \dots \quad (\mathcal{M}_j, \mu_j), \quad (\mathcal{M}_{j+1}, \mu_{j+1}) \quad \dots \quad (\mathcal{M}_q, \mu_q)$$
$$\mathcal{B}_1, \qquad \mathcal{B}_2, \quad \dots \quad \mathcal{B}_j, \qquad \mathcal{B}_{j+1}, \qquad \dots \qquad \mathcal{B}_q$$

The LR B-spline rules

- Starting point tensor product B-spline basis
- Incrementally refine the spline space by splitting the support of selected B-splines by inserting mesh-rectangles. For each refinement:
 - Perform additional refinements if some B-splines do not have minimal support
 - Optional check for Linear Independence at each refinement step
 - Check dimension increase by dimension formula for spline space over box partitions in \mathbb{R}^d , $d \ge 2$.
 - Check that the spline space is spanned by the B-splines
 - Check that we have a basis, e.g., number of B-splines corresponds to the dimension of the spline space

Alternative linear independency check: Run the collection of LR B-splines through the peeling Algorithm

Important properties for splines in Isogeometric Analysis

- Local refinement should give nested spline spaces
- Mesh completion to keep mesh properties
 - Does the B-spline functions span the spline space over the Boxpartition
- Geometric interpretation of coefficients
 - Scaled or rational scaled shape functions form a partition of unity

T-splines

General T-splines (Rational Scaling of B-splines for partition of unity)

Semi-Standard T-splines (Scaled B-splines give polynomial partition of unity)

Dual Compatible T-splines (AST)

Nestedness of splines spaces

- General T-splines;: No
- Semi-Standard T-splines: Yes

Locally Refined B-splines

Locally LR B-splines (Scaled B-splines give polynomial partition of unity)

None Overloaded LR B-splines (Guaranteed to be linear independent)

Dual Compatible LR B-splines (Guaranteed to be linear independent)

- LR B-splines guarantee nested spline spaces
- None overloaded B-splines are linearly independent
- Dual Compatible LR B-splines and Dual Compatible Tsplines (AST) are closely related.

Splines spaces of Semi-Standard T-splines seem to be included in the spline spaces of LR B-splines

LR B-splines keep pace with the dimension of the spline space over the box partion

Refinement approaches of T-splines and LR B-splines

T-splines

Refinement in vertex T-grid Parameter domain, **Polynomial segments** Adding two close vertices by refinement in the T-spline vertex grid (T-grid)

LR B-splines

Refinement in parameter domain

- Adding a minimal "+" in the parameter domain of LR B-splines
- Position of vertices in parameter domain average of internal knots

Specify LR B-spline refinement in the vertex mesh (Bi-cubic example)

Dotted lines added to visualize partition into elements (polynomial pieces) and suggest possible locations for refinement specification.

• The vertex mesh augmented with all knotlines (extended T-mesh)

() SINTEF

Direct Visualization of LR B-splines on the GPU, view dependent tessellation

LR-splines		
Run server (http://loc	alhost:8080/index.html)	
Open file	LR-Splines surface	
wireframe Reload shaders	4048.8 FPS	Video by: Jon Hjelmervik
	Data courtesy of http://www.opentopography.org/	SINTEF ICT
SINTEE	Advances in Computational Mechanics Diogo Echruary 26 2013	

.

Peeling for Ensuring Linear Independence

(Valid for LR B-splines and Semi-Standard T-splines)

The refinement starts from a tensor product B-spline space with $(p_1 + 1)(p_2 + 1) \dots (p_d + 1)$ B-splines covering an element spanning the polynomial space of degree (p_1, p_2, \dots, p_d) over the element.

- A refinement cannot reduce the polynomial space spanned over an element.
- An extra B-spline in a linear dependency relation can be removed without changing spanning properties over its elements
 - Before the removal of a B-spline there must consequently be more than $(p_1 + 1)(p_2 + 1) \dots (p_d + 1)$ B-splines covering all elements of the removed B-spline.

Overloaded elements and B-splines

- We call an element overloaded if there are more than $(p_1 + 1)(p_2 + 1) \dots (p_d + 1)$ B-splines covering the element.
- We call a B-spline overloaded if all its elements are overloaded.

Illustration by: Kjetil A. Johannessen, SINTEF

The support of overloaded B-splines colored grey.

Observations

- If there is no overloaded B-spline then the B-splines are locally (and globally) linearly independent
 - All overloaded elements not part of an overloaded B-spline can be disregarded
- Only overloaded B-splines can occur in linear dependency relations
- A linear dependency relation has to include at least two* overloaded B-splines.
 - Elements with only one overloaded B-spline cannot be part of linear dependency relation. Thus overloaded B-spline having such an element cannot be part of linear dependency relation.

* The number is actually higher, at least: $2^{l} + 1$ in the *l*-variate case.

Example peeling algorithm for overloaded B-splines.

An introduction study

Overloaded B-splines

Example, Continued.

Advances in Computational Mechanics, Diego, February 26, 2013

An introduction study

Overloaded B-splines

Example, Continued.

- 《口》《聞》《臣》《臣》 臣 の父父

An introduction study

Overloaded B-splines

All B-splines remaining some elements that are overloaded only once. Linear dependency not possible.

- ▲ ㅁ ▶ ▲ 큔 ▶ ▲ 큰 ▶ ▲ 큰 - ~ 의식(?*

An introduction study

Advances in Computational Mechanics, Diego, February 26, 2013

Overloaded B-splines

No overloaded B-splines remaining. Linear dependency not possible.

- ▲ロト ▲母ト ▲ヨト ▲ヨト 三日 - のんの

An introduction study

v Overloaded B-splines

Current work on LR B-splines at SINTEF

- LR Splines extensions to the SINTEF GoTools C++ library is under way. EU-project: TERRIFIC.
 - www.terrific-project.eu
- We work an efficient computation of stiffness matrices for LR Spline represented IGA on multi-core and many core CPUs
- We work on IgA based on LR B-splines
- We work on efficient LR B-spline visualization on GPUs
- We address representation of geographic information using LR B-splines in EU-project Iqmulus
 - www.iqmulus.eu

Simulation – Future Information flow

