Enabling Production of Remote Gas

a cross disciplinary competence building project

1st Trondheim Gas Technology Conference 21-22nd October 2009

Mona J. Mølnvik, Senior research scientist SINTEF Energy Research

Contributors:

Grethe Tangen, SINTEF Ketil Firing Hanssen, DNV Berit Floor, Lund SINTEF Åse Slagtern, Aker Solutions Sven Tollak Munkejord, SINTEF Per Eilif Wahl, SINTEF Rune Myrstad, SINTEF Bjørnar Arstad, SINTEF

Outline of presentation

- Remote gas perspectives
- Challenges
- The project
- Results
- Summary

Natural gas perspectives

IEA, Natural Gas Market Review 2007 – Security in a globalising market to 2015:

"Natural gas is becoming an increasingly global commodity; developments in previously separate regional gas markets can no longer be considered in isolation"

IEA, Natural Gas Market Review 2009 – Developments in the LNG markets:

"The 2009-13 period will see liquefaction capacity increase from 280 bcm as of end 2008 to 373 bcm by end 2010 and 410 bcm by end 2013, almost a 50% increase within five years"

Many concepts for offshore LNG, GTL and Methanol have been developed, but not implemented

- The reason for not being realized might be insufficient economical margin to bear the risk related to the following issues:
 - Technical
 - Operational
 - □ Safety
 - Regulations
 - □ The number of stake-holders involved along the gas chain
- These issues lead to the hypothesis that future floating gas conversion concepts would benefit from more compact equipment
- Further, that these challenges also requires an interdisciplinary approach

Enabling Production of Remote Gas

- to be presented in this conference

Developing scenarios for Remote Gas production as a tool for directing multidisciplinary research

□ 4 scenarios for Remote Gas

Recommendations:

- Floating gas conversion and production of LNG
- Mobile production / processing units
- Production / processing in arctic areas
- Sustainability of remote gas production
- Sub-sea production and gas processing
- Modular design and scalability of processes

Grethe Tangen and Mona Mølnvik, Scenarios for remote gas production, Applied Energy, Volume 86, Issue 12, December 2009, Pages 2681-2689.

Gas conversion Mind your own business

Pipeline

Atlantis

Developing scenarios for Remote Gas production as a tool for directing multidisciplinary research

A common basis was provided for studies related to:

- □ Whole-system issues: ReMET and Pinocchio LNG
- LNG processes: Pinocchio LNG

Chemical gas conversion processes: ReMET

Pinocchio LNG

- Modularized offshore LNG plant
- Standardized processes
- Scalable processes
- Process reuse
- Local power generation
- Zero emissions of hazardous chemicals
- Ultra-low emissions of CO₂
- Fast-track manufacturing and process installation
- Low operation costs

Suited for remote operation

LNG process for Pinocchio LNG

- Criteria for selection of LNG process:
 - From literature
 - From description of the Pinocchio LNG concept
 - □ From the project partners
- Evaluation and selection of LNG process:
 - □ Prico (reference)
 - Tealarc
 - □ Expansion process
- Energy analysis

- Improved understanding of the LNG process optimization problem and formulation of restrictions
- SQP and Evolutionary search methods researched
- The impact of process design decisions on operability and control of an LNG process

Fundamental aspects of flow behavior in LNG heat exchangers

Modeling and experimental work to gain insight into fundamental phenomena occurring in heat exchangers in liquefaction plants.

- Droplet film interaction studies carried out at relevant conditions
- Phenomena modeling for supporting future LNG heat exchanger model development

Bouncing of a 1-propanol droplet: diameter 0.23 mm impinging velocity 1.14m/s bouncing velocity 0.29 m/s

ReMET - Remote Methanol

Characteristics

- Associated fields of relatively small size
- Deep water (2000m+)
- Reuse of installations
- New gas conversion technology
- Modular design
- Possibility for conversion of existing ship

Methane \longrightarrow Syngas (CO+H₂) \longrightarrow Methanol

Syngas production by catalytic partial oxidation (CPO)

 $O_2 \text{ storage material} \\ \bullet CeO_2 \\ \bullet CeO_2 - ZrO_2 \\ \bullet Perovskites$

Microstructured packed reactor for methanol synthesis

 O_2 CH_4

Synthesis gas production by catalytic partial oxidation (CPO)

 Partial oxidation of CH₄ to syngas
 Oxidizing CH₄ by the framework oxygen of an reducible oxide at 500-600°C

Cyclic process
Regeneration by air
No steam or pure oxygen is needed

Perovskite based materials have been studied
Pure perovskites
Supported perovskites

D NTNU

Summary

- 50% of stranded gas is located off-shore
- Improved gas conversion technologies gives stranded gas access to the marked → remote gas
- The Remote Gas project carries out indepth research within LNG and chemical gas conversion
- Scenarios and concepts have been developed to direct the research within common issues, LNG and chemical gas conversion

This publication forms a part of the Remote Gas project, performed under the strategic Norwegian Research program Petromaks. The author(s) acknowledge the partners; StatoilHydro, UOP, Bayerngas Norge, Aker Kværner, DNV, and the Research Council of Norway (168223/S30) for support.

State

A Honeywell Company