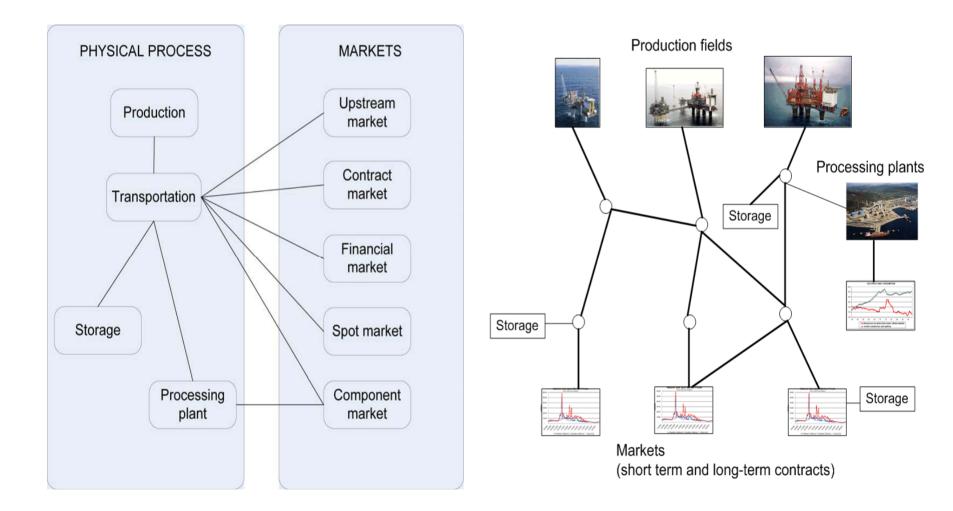
An operational portfolio optimization model for a natural gas producer

Kjetil T. Midthun Matthias P. Nowak and Asgeir Tomasgard

1st Trondheim Gas Technology Conference Trondheim 21-22nd October 2009


Technology and Society

Outline

- Background
- Optimization model
- Stochastic programming
 - Scenario generation
- Results
- Conclusions

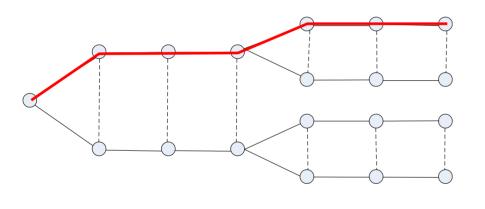
The natural gas value chain

The portfolio perspective

- Several bottlenecks in the network makes residual analysis suboptimal
 - Transportation bottlenecks
 - Production bottlenecks
 - Quality
 - System effects
- The flexibility gained with a portfolio perspective is substantial
 - Utilization of short-term markets
 - Combination of short-term markets and contract delivery
 - Blending possibilities
- What is the value of optimal storage utilization in this perspective?
 - In particular, how can the network itself be utilized as a market-near storage?

The optimization model

- Operational portfolio optimization model for a natural gas producer
- System perspective
- Multi-stage stochastic model
 - Stochasticity in gas prices and demand in long-term contracts
 - Resolution: days
 - Time-horizon: one week
- Linear programming model
 - Linearization of pressure constraints
 - Linearization of compressor costs
 - Linearization of line-pack relationship with pressure in pipelines
- Assume perfect competition in the market nodes
- Storage in pipelines (line-pack)
 - Commercial value of actively using the line-pack for maximizing profits
- Benchmarked on real market prices



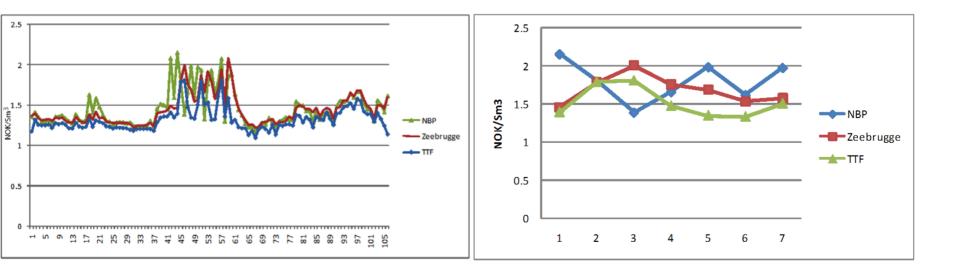
Recourse decisions

- Consider a problem with two stages. The following sequence of events occurs:
 - 1. We make a decisions now (first-stage decision)
 - 2. Nature makes a random decision (high/low, wet/dry, etc...)
 - 3. We make a second stage decision that attempts to correct some of the problems caused by (2)
 - 4. (in a multi-stage problem, nature makes another decision, we make another corrective action, and so on...)
 - The second stage decision are called recourse decisions
 - The goal of a two-stage model is to identify a first-stage decision that is well positioned against all possible realizations of the random variables

Scenario tree

t t+1 t+2 t+3 t+4 t+5 t+6

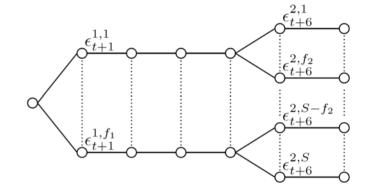
- Each path through the tree gives a scenario
- A stage is a point in time where it makes sense to make a new decisions
 - New information is available
- The number of stages is determined based on problem characteristics
 - Must capture all the important consequences of the first stage decisions

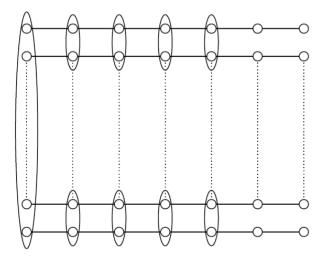


Natural gas prices

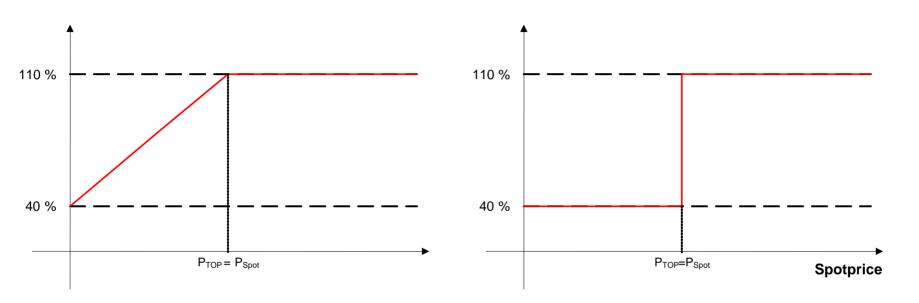
Seasonal patterns (high price in winter, low in summer)

- Mean reversion
- Large spikes (mainly upward spikes)


High volatility



Scenario generation



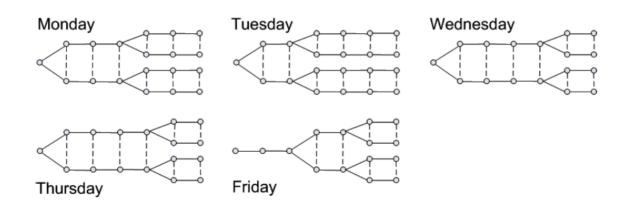
$$\hat{x}_{t+j}^{s} = \begin{cases} \alpha + \sum_{i=1}^{2} \beta_{i} x_{t+j-i}^{s} + \epsilon_{t+j}^{s} & \text{if } j = 1 \\ \alpha + \beta_{1} \hat{x}_{t+j-1}^{s} + \beta_{2} x_{t+j-2}^{s} + \epsilon_{t+j}^{s} & \text{if } j = 2 \\ \alpha + \sum_{i=1}^{2} \beta_{i} \hat{x}_{t+j-i}^{s} + \epsilon_{t+j}^{s} & \text{if } j > 2 \end{cases}$$

t + 1 + 2 + 3 + 4 + 5 + 6

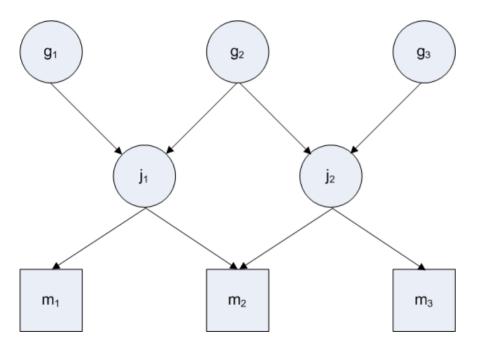
Modeling of TOP volume

Large customer

- Can not buy all needed gas in the spot market
- Assume that demand in customers portfolio is correlated with the spot price


Smaller customer

- If spot price is higher than TOP – takes maximum delivery
- If it is lower than TOP takes minimum delivery


Rolling horizon and price models

- Run the model for a given week, implement the first stage decisions
 - Update parameters (production limits, line-pack, scenarios)
 - Run the model again on the next weekday

Case used in the numerical examples

Simplified network

- Contains an aggregated view of the most important nodes in the North-Sea
- Accounts for approximately 60% of total transportation in the North-Sea
- Demand in long-term contracts accounts for approximately 60% of total production
- Starting line-pack equal to ending line-pack
 - Business constraint

Results with perfect information

Assumes that the producer has perfect information of the price development and TOP-demand

	Case 1	Case 2
Time period	T	T
Model type	With line-pack	Without line-pack
Spot market income	14573.94	14205.71
Average price	2.388	2.388
Average obtained price	2.927	2.833
Adjusted with average price	14450.40	14205.71
	Case 3	Case 4
Time period	T + 1	T+1
Model type	With line-pack	Without line-pack
Spot market income	18806.26	15994.74
Average price	2.927	2.927
Average obtained price	3.777	3.344
Adjusted with average price	18228.61	15994.74

Stochastic model versus deterministic model

In the stochastic model we have 3 stages and 900 scenarios

	Case 5	Case 6
Price model	PM1	PM1
Model type	With line-pack	With line-pack
Uncertainty	Stochastic	Deterministic
Spot market income	30317.06	30199.84
Average obtained price	3.022	2.882
Average price	2.658	2.658
Adjusted with average price	29408.23	28104.57
	Case 7	Case 8
Price model	PM1	PM1
Model type	Without line-pack	Without line-pack
Uncertainty	Stochastic	Deterministic
Spot market income	28566.24	28450.87
Average obtained price	2.946	2.934

Conclusions

Optimal utilization of the line-pack in pipelines as storage has a large commercial value

- Depends on the quality of the forecasting method
- With perfect information, the profitability increased with 13.97%
- Stochastic models give more robust results compared to deterministic models
 - In terms of forecasting parameters
 - In addition, the deterministic model was infeasible for some test runs on the rolling horizon

