DNTNU

Norwegian University of Science and Technology

Optimal selection of controlled variables for the C3-MR process for liquefaction of natural gas

Outline of presentation

- Description of C3-MR process model
- Degrees of freedom for design, operation and control
- Summary of inputs and disturbances to the process
- Idea of self-optimizing control
 - Idea and method
 - Application to this specific process
- Challenges in optimization
- Further work

Science and

Modelling framework

Models have been constructed in two different programs.

- Unisim (from Honeywell, sucessor to Hysys)
- gProms, equations given manually

Model description

- Constant compressor efficiency (may be changed later)
- Main LNG exchanger modelled as two counter-current, multiflow heat exchangers
- Simple heat exchanger models:
 - U assumed constant
 - area is only variable parameter
 - pressure drops specified directly
- The propane kettles are modelled as a shell and tube heat exchanger followed by a flash tank.

7

www.ntnu.no

Model, continued

- Besides given parameters and assumed given variables, there are 24 variables to specify:
 - Propane flow in each branch (2)
 - Four propane pressures, two mixed refrigerant pressures (6 in all)
 - 11 heat exchanger area values
 - Flow and composition of the mixed refrigerant (5)

Degrees of freedom

- Count number of variables that can be physically manipulated
 - Valves (here: 8, excluding cooling water flows and feed flow rate)
 - Compressors (here; 4)
 - Heat exchanger bypass flows (here; none)
- Subtract states that must be controlled, but have no steady-state effect
 - Here, these are the six propane vaporizer levels

DOF for optimizing operation

- We have 12 6 = 6 degrees of freedom available.
- Some used to control active constraints
- Remaining variables used to optimize operation

Disturbances and inputs

- The disturbances (*d*) are the cooling temperature, feed pressure and feed composition
 - If the model is altered to include heat loss to surroundings, the ambient temperature is also to be considered a disturbance
- MR composition might also vary due to leaks
- The physically manipulated variables (u) in the process are the valve openings and compressor speeds

11

Optimum for nominal conditions

- Assume natural gas feed is 50 kmol/s
- Propane pressures are 5.5 bar, 3.15 bar and 1.1 bar.
- MR compressor exit presure: 46 bar
- MR pressure in cold end: 4.85 bar
- MR composition :
 - 47.5 % CH4, 42.5 % C2H6, 2.0 % C3H8, 8.0 % N2
- Propane flows:
 - 12.1 kmol/s in natural gas precoolers
 - 61.4 kmol/s in MR precoolers
- Total MR flow: 101.5 kmol/s

Active constraints

- Temperature of natural gas leaving main HEX
- Superheating of propane out of the two low-pressure propane boilers
- That gives 3 active constraints
 - Maximum utilization of sea water cooling is already assumed an active constraint and accounted for in model

Controlled variables

- The three active constraints
- For the last three, look for self-optimizing variables

Self-optimizing control

 The idea is: Choose to control variables that, when controlled at a constant set point, give acceptable loss when disturbances occur

www.ntnu.no

Method of selecting variables

- Maximum scaled gain rule (Alstad and Skogestad):
 - We want our controlled variable(s) to be sensitive to changes in manipulated variables
 - We want the variation in optimal value to be small.
- That is choose variables where G_{scaled} = G/span(c) is large
 - G is process gain
 - Span is sum of optimal variation and implementation error

Selection continued

 Examine the best candidates from maximum scaled gain method by using exact local method (Halvorsen et. al.)

What is required?

- The nominal optimum must be known (given the design of the plant)
- The cost function must be evaluated as a function of disturbances, for different choices of controlled variables *c*
 - We assume that active constraints are controlled.
- The process must also be reoptimized with the candidate variable free to vary, to find the optimal variation in *c*.

Challenges in optimization

- Model is not robust to all variable changes
- Many constraints
 - Minimum temperature approach in the model this sums up to 8 constraints
 - Superheating of compressor feed streams
 - Active set may change frequently

Further work

- Make model more robust to make optimization easier (fewer model evaluation failures)
- Complete the analysis outlined in this presentation
 - Reoptimize for disturbances
 - Calculate scaled gain for potential controlled variables

