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What is ProcessCybernetics
Systems Engineering

“Synthesis”?
Systems Engineering

Process Systems Engineering
Process Synthesis

Process Integration

NTNU
Engineering Insight
▪ Heuristic Rules

Optimization Methods
▪ Math ProgrammingHeuristic Rules Math Programming
▪ Stochastic Search

Thermodynamic Methods
▪ Pinch Analysis
▪ Exergy Analysis
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▪ Exergy Analysis



Motivation (1)
 Characteristics of Subambient Processes

♦ External Cooling provided by Refrigeration  Powerg p y g

♦ Pressure and Fluid Phase are important Design 
Variables (pressurized streams have cooling “stored”)

NTNU

♦ Single Component Refrigerants evaporate at constant 
Temperature, resulting in large Exergy Losses

♦ Multicomponent Refrigerants provide gliding 
Temperatures with reduced Exergy Losses, but they 
also introduce two-phase Flow Distribution Problemsalso introduce two phase Flow Distribution Problems

♦ Extremely tight Driving Forces in Heat Exchangers  
Rigorous Simulation and Advanced Thermo Packages
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Motivation (2)
 LNG   The fastest growing Energy Carrier

♦ Our “Test Site” for new Methodologies while trying 
d l I i P Cto develop new Innovative Process Concepts

♦ From large Scale Base Load to smaller Scale Plants
♦ Floating LNG investigated by several Companies

NTNU

♦ Floating LNG investigated by several Companies
♦ Natural Gas Liquefaction is a mature Process, but 

there may still be some Scope for Improvements:
Th d i Mi i 115 kWh/ LNG Thermodynamic Minimum:        115 kWh/tonne LNG

 Snøhvit MFCLNG Process1:       234 kWh/tonne LNG
 Niche with precooling2:              270 kWh/tonne LNG
 Dual N2 process (BHP)2:            350 kWh/tonne LNG

1 Roy Scott Heiersted. Presentation at NTNU Alumni, June 2007
2 Knut Arild Maråk, “Gas Phase Cycles for Liquefaction of Natural 
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Gas – Status and Outlook”, Trial Lecture, NTNU, 11 June 2009



Motivation (3)
 Limitations in existing Design Methodologies

♦ Pinch Analysis has been extensively and successfully 
applied in a broad Variety of Industries for > 25 years

T C ExLoss

NTNU

H H

♦ Exergy Considerations have been included
♦ But:  Only Temperature is used as Design variable
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 Pressure, Composition and Fluid Phase not considered



Background:  Liquefied Energy Chain

NTNU

 Key Features of the “LEC” Concept
♦ Utilization of Stranded Natural Gas for Power Production♦ Utilization of Stranded Natural Gas for Power Production
♦ Elegant and Cost Effective solution to the CCS Problem
♦ CO2 replaces Natural Gas injection for EOR
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♦ Combined Energy Chain (LNG) and Transport Chain (CO2)



Need for Design Methods identified
 The Offshore Process was Designed by

♦ Trial & Error
♦ Thermodynamic Insight
♦ Process Knowledge (LNG)
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♦ Rigorous Steady-State Simulation
 The Design Process resulted in Insight

♦ S t f 10 H i ti R l d l d f♦ Set of 10 Heuristic Rules were developed for
 Pressure Manipulations
 Fluid Phase Considerations
 Design Actions in General

 No Systematic Design Method available
♦ M t C id P d Fl id Ph
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♦ Must Consider Pressure and Fluid Phase



Extended Problem Definition
for Heat Recovery Systemsfor Heat Recovery Systems

Target
State

Supply
State

State

NTNU

S e

“Given a set of Process Streams with a Supply State (Temperature, 
P d th lti Ph ) d T t St t llPressure and the resulting Phase) and a Target State, as well as 

Utilities for Power, Heating and Cooling;
Design a System of Heat Exchangers, Expanders, Pumps and 
Compressors such that the Irreversibilities (or a Cost relatedCompressors such that the Irreversibilities (or a Cost related 

Objective Function such as Total Annualized Cost) is minimized”

The ”Path” from Supply to Target State is not fixed
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The ”Path” from Supply to Target State is not fixed



Expanding a pressurized Cold Stream
Given a ”Cold” Stream with Ts = - 120ºC, Tt = 0ºC, ps = 5 bar, pt = 1 bar

Basic PA and the 2 ”extreme” Cases are given below:g
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PA -120 159



Composite Curves can be manipulated
 Given a pressurized Cold Stream

♦ Ts   120C , Tt  0C , ps  5 bar , pt  1 bar

Attainable Region for 1 Stream

NTNU
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Appropriate Placement Concept of PA 
i it d f C d E drevisited for Compressors and Expanders

 Appropriate Placement (Integration) established for
♦ Ch i l R Di ill i C l d E♦ Chemical Reactors, Distillation Columns and Evaporators
♦ Heat Engines, Heat Pumps and Refrigeration Cycles

 In the “Stand-Alone” Case

NTNU

♦ Compressors should operate at low Temperature possibly 
with interstage Coolers to reduce Power Requirements

♦ Expanders should operate at high Temperature possibly♦ Expanders should operate at high Temperature, possibly 
with reheat to increase Power Production

 As Part of a Heat Recovery Problem
♦ C id ddi i l H d h ld b l d♦ Compressors provide additional Heat and should be placed 

above the Pinch Temperature (where there is Heat Deficit)
♦ Expanders provide additional Cooling and should be placed 
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below the Pinch Temperature (where there is Heat Surplus)



Appropriate Placement of Compressors
A i l “E i t l S t ”A very simple “Experimental Setup”

 Example 1
♦ One Hot, two Cold Streams, H1 to be compressed, , p
♦ Key Q:  What is the Optimal Compressor inlet Temperature?
♦ Objective:  Maximize Exergy Efficiency

 Example 2

NTNU

 Example 2
♦ Two Hot, two Cold Streams, H2 to be compressed
♦ Key Q:  Effect of Tcomp,in on the Process Pinch?

 Assuming Ideal Gases and Isentropic Expansion Assuming Ideal Gases and Isentropic Expansion
1
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Key Information for Example 1
Table 1 Stream Data for Example 1 

  Stream   ( )sT C   ( C)tT   (kW/ C) pm c   (kW)Q  (bar)sp  (bar)tp

     H1     130     -75          2.0     410     1.0     2.0
     C1       15     140           5.0     625        -        - 
     C2      -50     140           1.0     190        -        - 

LP 150 150 - - - -

NTNU

     LP     150    150                               
      R      -85      -85             -        -        -        - 

 
 Traditional Targeting

♦ Tmin = 10C , TPinch = 25C/15C
♦ QH,min = 540 kW , QC,min = 135 kW

 Parameter Values (also for Example 2) Parameter Values (also for Example 2)
♦ cp = 1.0 kJ/kgC , k = cp / cv = 1.4 , T0 = 298 K 

 Variation of Compressor inlet Temperature
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♦ Tcomp,in from -75C to +125C



Calculation Results for Example 1
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 Regions for Compressor inlet Temperature
♦ From -75C to -28.5C:  Compression entirely below Pinch

W Qh Qc Exergy EfficiencyW Qh Qc Exergy EfficiencyExergy Efficiency

p y
♦ From -28.5C to +25C:  Compression moves gradually into 

the above Pinch Region
♦ From +25C to +125C:  Compression entirely above Pinch
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 Appropriate Placement is exactly at the Pinch



Key Information for Example 2
Table 2 Stream Data for Example 2 

  Stream   ( )sT C   ( C)tT   (kW/ C) pm c   (kW)Q  (bar)sp  (bar)tp

     H1       50    -160           1.5     315        -        - 
     H2         0    -120           2.5     300      1.0      2.0 
     C1    -180      -20           2.0     320        -        - 

C2 -60 30 4 0 360 - -

NTNU  No Utility Data provided
♦ Focus is on Pinch Changes

     C2      -60      30          4.0     360       -       -
 

♦ Focus is on Pinch Changes
♦ No Exergy Calculations

 Traditional Targeting
♦ T 10C T 50C/ 60C♦ Tmin = 10C , TPinch = -50C/-60C
♦ QH,min = 165 kW , QC,min = 100 kW

 Variation of Compressor inlet Temperature
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♦ Tcomp,in from -120C to 0C



Calculation Results for Example 2
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 Regions for Compressor inlet Temperature
♦ From -120C to -90.1C:  Compression entirely below Pinch
♦ For Compressor inlet at 90 1C the outlet is 50C (Pinch)♦ For Compressor inlet at -90.1 C, the outlet is -50 C (Pinch)
♦ From -90.1C to about -60C:  Pinch follows Compressor 

outlet Temperature until it reaches 0C, when the Supply 
Temperature of H2 (also 0C) takes over as Pinch
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Temperature of H2 (also 0 C) takes over as Pinch
♦ At Tcomp,in of about -32C Pinch jumps back to -50C/-60C



Compressor affects Pinch Temperature
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Appropriate Placement vs. a moving Pinch ??
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100

Compressor affects Composite Curves
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Insights obtained from the Examples
 From Example 1

♦ Appropriate Placement of a Compressor is “at the Pinch”, 
meaning Compressor inlet Temperature at the Pinchmeaning Compressor inlet Temperature at the Pinch 
Temperature, thus delivering Heat above Pinch

♦ Similar (opposite) Conclusions can be made for Expanders

NTNU

 From Example 2
♦ With multiple Streams some of which are subject to Pressure 

Changes, Stream Data will be Floating, not fixed
♦ The Pinch (constantly changing) becomes less important, 

and it is impossible to refer to Appropriate Placement of 
Compressors and Expanders relative to a moving Pinchp p g

 The true Value of the new Insight
♦ A new Superstructure can be developed for Heat Recovery 

Problems where Compression and Expansions is included
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Problems where Compression and Expansions is included



Superstructure for the Extended 
Heat Recovery ProblemHeat Recovery Problem

TH1,outTH1,out

 Consider a Hot Stream
♦ If the Supply Temperature is above 

E-2

T T

TH1,in
TC3,out

TC3,in

H1,out
E-2E-2

T T

TH1,in
TC3,out

TC3,in

H1,out pp y p
Pinch, it should be cooled to Pinch or 
Target Temperature (if above Pinch)

♦ If/when the Stream is at Pinch it 
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C-1

E-1
TC1,in TC1,out

TC2,in TC2,out

TH2 inTH2 out

C-1C-1

E-1E-1
TC1,in TC1,out

TC2,in TC2,out

TH2 inTH2 out

should be compressed according to 
the new Insight (outlet Pressure free)

♦ Next, it should be cooled to Pinch, 
where the next Option according to

E-3

C-2
H2,inH2,out

TH3,inTH3,out

TC4,in TC4,out

T

E-3E-3

C-2C-2
H2,inH2,out

TH3,inTH3,out

TC4,in TC4,out

T

where the next Option according to 
the new Insight is to expand the 
Stream (outlet Pressure free)

♦ The Stream should then be heated to

C-3

TH4,in

TH4,out

C-3C-3

TH4,in

TH4,out
♦ The Stream should then be heated to 

Pinch or the Target Temperature
♦ A 2nd and final compression can be 

considered before cooling the Hot 
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Stream to Target Temperature



Application of the new Superstructure:
A novel Offshore LNG ProcessA novel Offshore LNG Process

NTNU

Self-supported w.r.t. Power
& fl bl R f i
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& no flammable Refrigerants



Resulting Composite Curves
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The Nitrogen “Path” Offshore

NTNU
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Concluding Remarks
 Subambient Processes have special Characteristics that 

require new Design Methodologies where Pressure and 
Fluid Phase are considered important Design Variables p g

 In Subambient Processes, external Cooling is provided by 
Compression and Expansion (Refrigeration Cycles)
N t bi S i th th t C i d E i f

NTNU

 Not a big Surprise then that Compression and Expansion of 
Process Streams reduce the Need for Refrigeration

 With Compressors & Expanders, Stream Data becomes p p ,
Floating, and the Pinch Concept as well as the Appropriate 
Placement of Compressors & Expanders are less useful

 A new Superstructure for simultaneous Heating Cooling A new Superstructure for simultaneous Heating, Cooling, 
Compression and Expansion has been developed

 This new Superstructure has been successfully applied to 
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design an Offshore Natural Gas Liquefaction Process



Opportunities for using Optimization

 Many challenging Tasks
♦ Structural Design of Single Process of a Production Chain
♦ Optimizing Operating Variables in entire Production Chains
♦ Optimization of Mixed Refrigerants Composition

 Mathematical Programming (“deterministic”)

NTNU

 Mathematical Programming ( deterministic )
♦ Strength in Synthesis if a clever Superstructure is available
♦ Suffers from Combinatorial Explosion (binary variables) 

d L l O ti ( Li iti ft C )and Local Optima (non-Linearities are often non-Convex)
 Stochastic Algorithms (“non-deterministic”)

♦ Examples are many:  Simulated Annealing, Genetic 
Algorithms, Evolutionary Search, Tabu Search, etc.

♦ Can be combined with rigorous Process Simulation
♦ Successfully applied for Mixed Refrigerant Optimization
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♦ Successfully applied for Mixed Refrigerant Optimization


