TGTC'09 – 1st Trondheim Gas Technology Conference 21-22 October 2009 – Trondheim, Norway

New Synthesis Methods for Subambient Processes such as LNG

by

Audun Aspelund and Truls Gundersen

Department of Energy and Process Engineering Norwegian University of Science and Technology Trondheim, Norway

13.11.09

Motivation (1)

Characteristics of Subambient Processes

- External Cooling provided by **Refrigeration** \Rightarrow Power
- Pressure and Fluid Phase are important Design Variables (pressurized streams have cooling "stored")
- Single Component Refrigerants evaporate at constant Temperature, resulting in large Exergy Losses
- Multicomponent Refrigerants provide gliding Temperatures with reduced Exergy Losses, but they also introduce two-phase Flow Distribution Problems
- ♦ Extremely tight Driving Forces in Heat Exchangers ⇒ Rigorous Simulation and Advanced Thermo Packages

Motivation (2)

LNG – The fastest growing Energy Carrier

- Our "Test Site" for new Methodologies while trying to develop new Innovative Process Concepts
- From large Scale Base Load to smaller Scale Plants
- Floating LNG investigated by several Companies
- Natural Gas Liquefaction is a mature Process, but there may still be some Scope for Improvements:
 - Thermodynamic Minimum: ≈ 115 kWh/tonne LNG
 - Snøhvit MFC[®]LNG Process¹: 234 kWh/tonne LNG
 - Niche with precooling²: ≈ 270 kWh/tonne LNG
 - Dual N2 process (BHP)²: ≈ 350 kWh/tonne LNG
 - ¹ Roy Scott Heiersted. Presentation at NTNU Alumni, June 2007

² Knut Arild Maråk, "Gas Phase Cycles for Liquefaction of Natural Gas – Status and Outlook", Trial Lecture, NTNU, 11 June 2009

Motivation (3)

Limitations in existing Design Methodologies

Pinch Analysis has been extensively and successfully applied in a broad Variety of Industries for > 25 years

• **Exergy** Considerations have been included

- But: Only **Temperature** is used as Design variable
 - **Pressure**, Composition and Fluid **Phase** <u>not</u> considered

13.11.09

Background: Liquefied Energy Chain

Key Features of the "LEC" Concept

- Utilization of **Stranded** Natural Gas for Power Production
- Elegant and Cost Effective solution to the **CCS** Problem
- CO₂ replaces Natural Gas injection for EOR
- **Combined** Energy Chain (LNG) and Transport Chain (CO₂)

Need for Design Methods identified

The Offshore Process was Designed by

- Trial & Error
- Thermodynamic Insight
- Process Knowledge (LNG)
- Rigorous Steady-State Simulation

The Design Process resulted in Insight

- Set of 10 Heuristic Rules were developed for
 - Pressure Manipulations
 - Fluid Phase Considerations
 - Design Actions in General

No Systematic Design Method available

Must Consider Pressure and Fluid Phase

Extended Problem Definition for Heat Recovery Systems

NTNU

"Given a set of Process Streams with a Supply State (Temperature, **Pressure** and the resulting **Phase**) and a Target State, as well as Utilities for **Power**, Heating and Cooling; Design a System of Heat Exchangers, *Expanders*, *Pumps* and **Compressors** such that the **Irreversibilities** (or a **Cost** related **Objective Function such as Total Annualized Cost) is minimized**"

The "Path" from Supply to Target State is <u>not</u> fixed

13.11.09

Expanding a pressurized Cold Stream

Given a "Cold" Stream with $T_s = -120^{\circ}C$, $T_t = 0^{\circ}C$, $p_s = 5$ bar, $p_t = 1$ bar

Basic PA and the 2 "extreme" Cases are given below:

NTNU

13.11.09

Composite Curves can be manipulated

Given a pressurized Cold Stream

• $T_s = -120^{\circ}$ C, $T_t = 0^{\circ}$ C, $p_s = 5$ bar, $p_t = 1$ bar

Attainable Region for 1 Stream

Appropriate Placement Concept of PA revisited for Compressors and Expanders

Appropriate Placement (Integration) established for

- Chemical Reactors, Distillation Columns and Evaporators
- Heat Engines, Heat Pumps and Refrigeration Cycles

In the "Stand-Alone" Case

- **Compressors** should operate at **low** Temperature possibly with interstage Coolers to reduce Power Requirements
- **Expanders** should operate at **high** Temperature, possibly with reheat to increase Power Production

As Part of a Heat Recovery Problem

- Compressors provide additional Heat and should be placed above the Pinch Temperature (where there is Heat Deficit)
- Expanders provide additional Cooling and should be placed below the Pinch Temperature (where there is Heat Surplus)

Appropriate Placement of Compressors A very simple "Experimental Setup"

Example 1

- One Hot, two Cold Streams, H1 to be compressed
- Key Q: What is the Optimal Compressor inlet Temperature?
- Objective: Maximize **Exergy** Efficiency

Example 2

- Two Hot, two Cold Streams, H2 to be compressed
- Key Q: Effect of $T_{\text{comp,in}}$ on the Process **Pinch**?
- Assuming Ideal Gases and Isentropic Expansion

$$Compressor: \quad \frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}}$$
$$\Delta \dot{E}_x = \dot{m} \cdot c_p \cdot \left(T_t - T_s - T_0 \cdot \ln \frac{T_t}{T_s}\right) + \dot{m} \cdot c_p \cdot \frac{k-1}{k} \cdot T_0 \cdot \ln \frac{p_t}{p_s}$$

13.11.09

Key Information for Example 1

Table 1 Stream Data for Example 1

Stream	$T_{s}(^{\circ}C)$	T_t (°C)	$\dot{m} \cdot c_p \; (kW/^{\circ}C)$	\dot{Q} (kW)	p_s (bar)	p_t (bar)
H1	130	-75	2.0	410	1.0	2.0
C1	15	140	5.0	625	-	-
C2	-50	140	1.0	190	-	-
LP	150	150	-	-	-	-
R	-85	-85	-	-	-	-

NTNU

Traditional Targeting

- $\Delta T_{\text{min}} = 10^{\circ}\text{C}$, $T_{\text{Pinch}} = 25^{\circ}\text{C}/15^{\circ}\text{C}$
- $Q_{\rm H,min} = 540 \, \rm kW$, $Q_{\rm C,min} = 135 \, \rm kW$
- Parameter Values (also for Example 2)
 - $c_{\rm p} = 1.0 \text{ kJ/kg}^{\circ}\text{C}$, $k = c_{\rm p} / c_{\rm v} = 1.4$, $T_0 = 298 \text{ K}$
- Variation of Compressor inlet Temperature
 - $T_{\text{comp,in}}$ from -75°C to +125°C

13.11.09

Calculation Results for Example 1

Regions for Compressor inlet Temperature

- ◆ From -75°C to -28.5°C: Compression entirely **below** Pinch
- From -28.5°C to +25°C: Compression moves gradually into the above Pinch Region
- ♦ From +25°C to +125°C: Compression entirely above Pinch

Appropriate Placement is exactly at the Pinch

13.11.09

NTNU

Key Information for Example 2

Table 2 Stream Data for Example 2

Stream	$T_s(^{\circ}C)$	T_t (°C)	$\dot{m} \cdot c_p \; (kW/^{\circ}C)$	\dot{Q} (kW)	p_s (bar)	p_t (bar)
H1	50	-160	1.5	315	-	-
H2	0	-120	2.5	300	1.0	2.0
C1	-180	-20	2.0	320	-	-
C2	-60	30	4.0	360	-	-

NTNU

No Utility Data provided

- Focus is on Pinch Changes
- No Exergy Calculations

Traditional Targeting

• $\Delta T_{\text{min}} = 10^{\circ}\text{C}$, $T_{\text{Pinch}} = -50^{\circ}\text{C}/-60^{\circ}\text{C}$

•
$$Q_{\rm H,min} = 165 \text{ kW}$$
, $Q_{\rm C,min} = 100 \text{ kW}$

- Variation of Compressor inlet Temperature
 - $T_{\text{comp,in}}$ from -120°C to 0°C

13.11.09

Calculation Results for Example 2

Regions for Compressor inlet Temperature

- ◆ From -120°C to -90.1°C: Compression entirely **below** Pinch
- For Compressor inlet at -90.1°C, the outlet is -50°C (Pinch)
- From -90.1°C to about -60°C: Pinch follows Compressor outlet Temperature until it reaches 0°C, when the Supply Temperature of H2 (also 0°C) takes over as Pinch
- At $T_{\text{comp,in}}$ of about -32°C Pinch jumps back to -50°C/-60°C

Compressor affects Pinch Temperature

Appropriate Placement vs. a moving Pinch ??

13.11.09

NTNU

T. Gundersen

Slide no. 17

Compressor affects Composite Curves

Insights obtained from the Examples

From Example 1

- Appropriate Placement of a Compressor is "at the Pinch", meaning Compressor inlet Temperature at the Pinch Temperature, thus delivering Heat <u>above</u> Pinch
- Similar (opposite) Conclusions can be made for **Expanders**

From Example 2

- With multiple Streams some of which are subject to Pressure Changes, Stream Data will be Floating, not fixed
- The Pinch (constantly changing) becomes less important, and it is impossible to refer to Appropriate Placement of Compressors and Expanders relative to a moving Pinch

The true Value of the new Insight

 A new Superstructure can be developed for Heat Recovery Problems where Compression and Expansions is included

Superstructure for the Extended Heat Recovery Problem

Consider a Hot Stream

- If the Supply Temperature is above Pinch, it should be cooled to Pinch or Target Temperature (if above Pinch)
- If/when the Stream is at Pinch it should be compressed according to the new Insight (outlet Pressure free)
- Next, it should be cooled to Pinch, where the next Option according to the new Insight is to expand the Stream (outlet Pressure free)
- The Stream should then be heated to Pinch or the Target Temperature
- A 2nd and final compression can be considered before cooling the Hot Stream to Target Temperature

13.11.09

NTNU

T. Gundersen

Slide no. 20

Application of the new Superstructure: A novel Offshore LNG Process

Resulting Composite Curves

The Nitrogen "Path" Offshore

Concluding Remarks

- Subambient Processes have special Characteristics that require new Design Methodologies where Pressure and Fluid Phase are considered important Design Variables
- In Subambient Processes, external Cooling is provided by Compression and Expansion (Refrigeration Cycles)
- Not a big Surprise then that Compression and Expansion of
 Process Streams reduce the Need for Refrigeration
- With Compressors & Expanders, Stream Data becomes
 Floating, and the Pinch Concept as well as the Appropriate
 Placement of Compressors & Expanders are less useful
- A new Superstructure for simultaneous Heating, Cooling, Compression and Expansion has been developed
- This new Superstructure has been successfully applied to design an Offshore Natural Gas Liquefaction Process

13.11.09

Opportunities for using Optimization

Many challenging Tasks

- **Structural** Design of Single Process of a Production Chain
- Optimizing **Operating** Variables in entire Production Chains
- Optimization of Mixed Refrigerants Composition

Mathematical Programming ("deterministic")

- Strength in **Synthesis** if a clever Superstructure is available
- Suffers from Combinatorial Explosion (binary variables) and Local Optima (non-Linearities are often non-Convex)

Stochastic Algorithms ("non-deterministic")

- Examples are many: Simulated Annealing, Genetic Algorithms, Evolutionary Search, Tabu Search, etc.
- Can be **combined** with rigorous Process Simulation
- Successfully applied for **Mixed Refrigerant** Optimization