Technology Status and Challenges for Floating LNG

Knut Arild Maråk and Bengt Olav Neeraas

 $knut.arild.marak@statoilhydro.com \ and \ bengt.olav.neeraas@statoilhydro.com$

1st Trondheim Gas Technology Conference October 22nd 2009

Contents

- What is Floating LNG? (FLNG)
- Technical challenges concerning FLNG
 - Offloading
 - Motion and tilt effects on process equipment
- Liquefaction process selection for FLNG
 - Boiling hydrocarbon refrigerants
 - -Nitrogen expander
- Status of FLNG projects

What is a Floating LNG unit?

No FLNG unit built so far!

Illustration: Höegh LNG

Advantage of FLNG

- Numerous stranded and remote gas fields
- Cheaper and faster in-yard construction than greenfield onshore
- No pipeline to shore, only riser required
- Also for fields where onshore development is undesired
- Why no FLNG at this point?
 - Easy fields developed with other solutions
 - First mover risk

Illustration: Flex LNG

Main technical challenges

- Effect of movement and tilt on critical equipment
 - Absorption/fractionation columns
 - Main cryogenic heat exchangers
 - -LNG sloshing in storage tanks
- LNG transfer/offloading
- Safety/Safety distances
- Deep water sea-water intake and riser systems

Columns

- CO₂ absorber
 - -Only very small gas bypass will give off-spec CO₂ level (50 ppm)
 - Offshore CO₂ absorber at Åsgard B performs satisfactorily not relevant for LNG
 - Onshore CO₂ absorber experience from Hammerfest LNG
 - > No experience in "moving CO_2 absorber" for 50 ppm spec.
 - Special design will be needed for FLNG
 - Final CO₂ removal could be done in subsequent water adsorption system
- Fractionation/condensate stabilisation
 - StatoilHydro have experience with Condensate Stabilization column at Åsgard B
- A more systematic review on columns is needed

Main cryogenic heat exchanger

- StatoilHydro has pre-qualified the Spiral Wound Heat Exchanger (SWHE) for floating applications.
- Unique knowledge of SWHE and Plate-Fin Heat Exchanger from Hammerfest LNG
- Effect of tilt in liquid distributors need to be addressed

LNG offloading

- Tandem offloading by aerial pipe
 - Flexible pipes, Offshore Cryogenic Transfer (OCT)
 - Currently being developed in a JIP together with ExxonMobil, Shell, Chevron, Petrobras and StatoilHydro
 - -Vacuum insulation
 - –16" inner pipe
- Other offloading concepts include
 - Traditional Chiksan (smooth sea only)
 - Floating hoses
 - -Aerial composite hose

Liquefaction process selection

Туре	Principle	Pros and cons
Gas expander cycles	Gas heating at linear gliding temperature and constant pressure	 Simple and compact Nitrogen not flammable and easy to produce Low sensitivity towards movement regarding two-phase flow refrigerant
		Lower efficiency, equipment in parallel
Cascade cycle	Pure refrigerants boiling at constant temperature at different pressure	• No issues with refrigerant distribution
		 Extensive equipment count Flammable refrigerant + ethylene import
Mixed refrigerant cycle	Mixed refrigerant boiling at gliding temperature at constant pressure	 High efficiency Lower volume flow of refrigerant
		 Requires refrigerant make-up of many components Refrigerant distribution in SWHE

Processes can also be combined

Advantages with expander processes

- Equipment
 - Simple and compact
 - Few parts and low CAPEX
- Distribution of refrigerant
 - No maldistribution issues as for two phase flow
 - Small or no sensitivity towards orientation or movement
- Refrigerant
 - Nitrogen not flammable and easy to produce
- Regularity
 - Simple design and automated operation
 - Fast start-up

Good alternative for smaller sized units

StatoilHydro FLNG concept history

MTPA = million tons per annum

Other published FLNG concepts

StatoilHydro

12

Source: Internet

Project status

- Many concepts have been suggested, but no steel has so far been cut
- Most promoted concepts (all in FEED-status):
 - Shell/Technip/Samsung (has money and fields, recently announced FLNG off shore Australia, barge is 470 x 70 m)
 - Flex/Samsung (ship hull, generic + field specific modules)
 - Linde/SBM (strong player with Linde's process and SBM's FPSO experience)
- Technical challenges remain, but none considered show stoppers

Depletion of close-to-shore fields will force the development of more remote fields using FLNG

