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Motivation
Why do I need a catalyst?
 Catalysts increase the reaction rates by lowering activation energy:
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Motivation
Steps in a reaction with catalytic particles

1
• Bulk diffusion of reactants

2
• Reactant diffusion to active sites

3
• Adsorption onto the active sites

4
• Reaction on the active surface

5
• Desorption of products

6
• Product diffusion to pore mouth

7
• Bulk diffusion of products
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Motivation
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Normal vs. anomalous diffusion
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 M. Küntz, P. Lavallée
 Water absorption profiles in clay-brick and limestone (2001)

 Propagation of σ faster than t1/2  superdiffusion

 High concentration diffusion of aqueous CuSO4 (2004)
 Concentration of CuSO4 propagates slower than t1/2  subdiffusion

 K. Ritchie
 Protein subdiffusion across cell membranes
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Motivation
The infinite propagation velocity paradox

 A perturbation in any region
of the domain is instantly
detected everywhere
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 This implies infinite
propagation velocity!

Fick’s law
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Motivation
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 Finite propagation speed of
the information due to the
relaxation term

 The affected region
extends with time

Cattaneo’s law

The infinite propagation velocity paradox
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Numerical model
1-D transient Cattaneo’s diffusion problem
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Initial and Boundary Conditions
C(x)=J(x)=0

C(t)=β(t)C(t)=β(t)

β(t)



Numerical model
Choice of the numerical method

 Modeling  lots of simulations  efficient method is
required (acceptable accuracy at low CPU time)

 Traditional approach: FDM and FVM. Very simple, but many
discretization points required for desired accuracy

 Galerkin-based FEM: convergence rate like FDM.

 Chosen Method: High Order Least Squares.
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Numerical model
Finite element approximation
 Nex, Ney elements
 Px, Py order polynomials
 Minimization problem
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Simulation results

τ=0 (Fick)
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Results
Simulation results

 For increasing values of τ:

 Finite propagation time
proportional to τ

 Growing oscillation time

 Growing overshoot in
maximum concentration
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Evolution of bulk concentration

Results

Time

CI (bulk
concentration)

Equilibrium
value
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Further Work
 The presented model can be extended to solve the 

generalized Cattaneo equation

 This extension would allow to model different degrees of 
subdiffusive and superdiffusive behaviors

 Work is being done on correlating Cattaneo’s equation 
with microscale models (CTRW)
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Summary
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Thanks! 

 Motivation
 Fick’s law predicts infinite propagation velocity
 Cattaneo’s constitutive law is considered instead

 Numerical model
 Transient 1-D High Order Least Squares Finite Element Model
 Solution for the evolution of concentration in a slab

 Results
 Fick and Cattaneo’s models predict the same equilibrium value
 Cattaneo’s model eliminates infinite propagation velocity
 The model predicts overshoot and oscillations in concentration

 Further work
 The model can be extended and correlated with microscale models
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Fractional derivatives
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Definition:

 The integral takes account for the nonlocality
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Convergence plots
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Relaxation time influence in transient
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